创建一个循环以获取满足条件的分组数据中的样本
create a loop to get samples in grouped data which meet a condition
我有一个数据框,其中数据按 ID 分组。我需要知道每个组的 10% 有多少个细胞,以便 select 样本中的这个数字,但是这个样本应该 select EP 为 1 的细胞。
我尝试做一个嵌套的 For 循环:一个 For 知道每个组的 10% 的单元格数量,更大的一个来采样这个数字满足条件 EP==1
x <- data.frame("ID"=rep(1:2, each=10),"EP" = rep(0:1, times=10))
x
ID EP
1 1 0
2 1 1
3 1 0
4 1 1
5 1 0
6 1 1
7 1 0
8 1 1
9 1 0
10 1 1
11 2 0
12 2 1
13 2 0
14 2 1
15 2 0
16 2 1
17 2 0
18 2 1
19 2 0
20 2 1
for(j in 1:1000){
for (i in 1:nrow(x)){
d <- x[x$ID==i,]
npix <- 10*nrow(d)/100
}
r <- sample(d[d$EP==1,],npix)
print(r)
}
data frame with 0 columns and 0 rows
data frame with 0 columns and 0 rows
data frame with 0 columns and 0 rows
.
.
.
until 1000
我想得到这个数据框,其中每个样本都在 x 中的一个新列中,并且采样的单元格有“1”:
ID EP s1 s2....s1000
1 1 0 0 0 ....
2 1 1 0 1
3 1 0 0 0
4 1 1 0 0
5 1 0 0 0
6 1 1 0 0
7 1 0 0 0
8 1 1 0 0
9 1 0 0 0
10 1 1 1 0
11 2 0 0 0
12 2 1 0 0
13 2 0 0 0
14 2 1 0 1
15 2 0 0 0
16 2 1 0 0
17 2 0 0 0
18 2 1 1 0
19 2 0 0 0
20 2 1 0 0
看到s1和s2中的每一个1都是被采样的细胞,对应每组(1, 2)中10%的满足条件EP==1的细胞
你可以试试
set.seed(1231)
x <- data.frame("ID"=rep(1:2, each=10),"EP" = rep(0:1, times=10))
library(tidyverse)
x %>%
group_by(ID) %>%
mutate(index= ifelse(EP==1, 1:n(),0)) %>%
mutate(s1 = ifelse(index %in% sample(index[index!=0], n()*0.1), 1, 0)) %>%
mutate(s2 = ifelse(index %in% sample(index[index!=0], n()*0.1), 1, 0))
# A tibble: 20 x 5
# Groups: ID [2]
ID EP index s1 s2
<int> <int> <dbl> <dbl> <dbl>
1 1 0 0 0 0
2 1 1 2 0 0
3 1 0 0 0 0
4 1 1 4 0 0
5 1 0 0 0 0
6 1 1 6 1 1
7 1 0 0 0 0
8 1 1 8 0 0
9 1 0 0 0 0
10 1 1 10 0 0
11 2 0 0 0 0
12 2 1 2 0 0
13 2 0 0 0 0
14 2 1 4 0 1
15 2 0 0 0 0
16 2 1 6 0 0
17 2 0 0 0 0
18 2 1 8 0 0
19 2 0 0 0 0
20 2 1 10 1 0
我们可以编写一个函数,它为每个 ID
提供 10%,并将其放在 EP = 1
的位置。
library(dplyr)
rep_func <- function() {
x %>%
group_by(ID) %>%
mutate(s1 = 0,
s1 = replace(s1, sample(which(EP == 1), floor(0.1 * n())), 1)) %>%
pull(s1)
}
然后用replicate
重复n
次
n <- 5
x[paste0("s", seq_len(n))] <- replicate(n, rep_func())
x
# ID EP s1 s2 s3 s4 s5
#1 1 0 0 0 0 0 0
#2 1 1 0 0 0 0 0
#3 1 0 0 0 0 0 0
#4 1 1 0 0 0 0 0
#5 1 0 0 0 0 0 0
#6 1 1 1 0 0 1 0
#7 1 0 0 0 0 0 0
#8 1 1 0 1 0 0 0
#9 1 0 0 0 0 0 0
#10 1 1 0 0 1 0 1
#11 2 0 0 0 0 0 0
#12 2 1 0 0 1 0 0
#13 2 0 0 0 0 0 0
#14 2 1 1 1 0 0 0
#15 2 0 0 0 0 0 0
#16 2 1 0 0 0 0 1
#17 2 0 0 0 0 0 0
#18 2 1 0 0 0 1 0
#19 2 0 0 0 0 0 0
#20 2 1 0 0 0 0 0
我有一个数据框,其中数据按 ID 分组。我需要知道每个组的 10% 有多少个细胞,以便 select 样本中的这个数字,但是这个样本应该 select EP 为 1 的细胞。
我尝试做一个嵌套的 For 循环:一个 For 知道每个组的 10% 的单元格数量,更大的一个来采样这个数字满足条件 EP==1
x <- data.frame("ID"=rep(1:2, each=10),"EP" = rep(0:1, times=10))
x
ID EP
1 1 0
2 1 1
3 1 0
4 1 1
5 1 0
6 1 1
7 1 0
8 1 1
9 1 0
10 1 1
11 2 0
12 2 1
13 2 0
14 2 1
15 2 0
16 2 1
17 2 0
18 2 1
19 2 0
20 2 1
for(j in 1:1000){
for (i in 1:nrow(x)){
d <- x[x$ID==i,]
npix <- 10*nrow(d)/100
}
r <- sample(d[d$EP==1,],npix)
print(r)
}
data frame with 0 columns and 0 rows
data frame with 0 columns and 0 rows
data frame with 0 columns and 0 rows
.
.
.
until 1000
我想得到这个数据框,其中每个样本都在 x 中的一个新列中,并且采样的单元格有“1”:
ID EP s1 s2....s1000
1 1 0 0 0 ....
2 1 1 0 1
3 1 0 0 0
4 1 1 0 0
5 1 0 0 0
6 1 1 0 0
7 1 0 0 0
8 1 1 0 0
9 1 0 0 0
10 1 1 1 0
11 2 0 0 0
12 2 1 0 0
13 2 0 0 0
14 2 1 0 1
15 2 0 0 0
16 2 1 0 0
17 2 0 0 0
18 2 1 1 0
19 2 0 0 0
20 2 1 0 0
看到s1和s2中的每一个1都是被采样的细胞,对应每组(1, 2)中10%的满足条件EP==1的细胞
你可以试试
set.seed(1231)
x <- data.frame("ID"=rep(1:2, each=10),"EP" = rep(0:1, times=10))
library(tidyverse)
x %>%
group_by(ID) %>%
mutate(index= ifelse(EP==1, 1:n(),0)) %>%
mutate(s1 = ifelse(index %in% sample(index[index!=0], n()*0.1), 1, 0)) %>%
mutate(s2 = ifelse(index %in% sample(index[index!=0], n()*0.1), 1, 0))
# A tibble: 20 x 5
# Groups: ID [2]
ID EP index s1 s2
<int> <int> <dbl> <dbl> <dbl>
1 1 0 0 0 0
2 1 1 2 0 0
3 1 0 0 0 0
4 1 1 4 0 0
5 1 0 0 0 0
6 1 1 6 1 1
7 1 0 0 0 0
8 1 1 8 0 0
9 1 0 0 0 0
10 1 1 10 0 0
11 2 0 0 0 0
12 2 1 2 0 0
13 2 0 0 0 0
14 2 1 4 0 1
15 2 0 0 0 0
16 2 1 6 0 0
17 2 0 0 0 0
18 2 1 8 0 0
19 2 0 0 0 0
20 2 1 10 1 0
我们可以编写一个函数,它为每个 ID
提供 10%,并将其放在 EP = 1
的位置。
library(dplyr)
rep_func <- function() {
x %>%
group_by(ID) %>%
mutate(s1 = 0,
s1 = replace(s1, sample(which(EP == 1), floor(0.1 * n())), 1)) %>%
pull(s1)
}
然后用replicate
重复n
次
n <- 5
x[paste0("s", seq_len(n))] <- replicate(n, rep_func())
x
# ID EP s1 s2 s3 s4 s5
#1 1 0 0 0 0 0 0
#2 1 1 0 0 0 0 0
#3 1 0 0 0 0 0 0
#4 1 1 0 0 0 0 0
#5 1 0 0 0 0 0 0
#6 1 1 1 0 0 1 0
#7 1 0 0 0 0 0 0
#8 1 1 0 1 0 0 0
#9 1 0 0 0 0 0 0
#10 1 1 0 0 1 0 1
#11 2 0 0 0 0 0 0
#12 2 1 0 0 1 0 0
#13 2 0 0 0 0 0 0
#14 2 1 1 1 0 0 0
#15 2 0 0 0 0 0 0
#16 2 1 0 0 0 0 1
#17 2 0 0 0 0 0 0
#18 2 1 0 0 0 1 0
#19 2 0 0 0 0 0 0
#20 2 1 0 0 0 0 0