如何在图像中选择正确的矩形?
How to choose the right rectangles in an image?
我想检测魔方的颜色。这就是我想要的:Link
我能够使用 Open CV 的 findContours
功能识别 9 个彩色字段。
这是我的代码:
Mat input = new Mat(); //The image
Mat blur = new Mat();
Mat canny = new Mat();
Imgproc.GaussianBlur(input, blur, new Size(3,3), 1.5); //GaussianBlur to reduce noise
Imgproc.Canny(blur, canny, 60, 70); //Canny to detect the edges
Imgproc.GaussianBlur(canny, canny, new Size(3,3), 1.5); //Again GaussianBlur to reduce noise
List<MatOfPoint> contours = new ArrayList<>();
Mat hierachy = new Mat();
Imgproc.findContours(canny, contours, hierachy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); //Find contours
List<MatOfPoint2f> approxedShapes = new ArrayList<>();
for(MatOfPoint point : contours){
double area = Imgproc.contourArea(point);
if(area > 1000){
MatOfPoint2f shape = new MatOfPoint2f(point.toArray());
MatOfPoint2f approxedShape = new MatOfPoint2f();
double epsilon = Imgproc.arcLength(shape, true) / 10;
Imgproc.approxPolyDP(shape, approxedShape, epsilon, true); //"Smooth" the edges with approxPolyDP
approxedShapes.add(approxedShape);
}
}
//Visualisation
for(MatOfPoint2f point : approxedShapes){
RotatedRect rect = Imgproc.minAreaRect(new MatOfPoint2f(point.toArray()));
Imgproc.circle(input, rect.center, 5, new Scalar(0, 0, 255));
for(Point p : point.toArray()){
Imgproc.circle(input, p, 5, new Scalar(0,255,0));
}
}
这是“原始”源图像:
它产生这个输出(绿色圆圈:角;蓝色圆圈:矩形的中心):
如您所见,检测到的矩形比 9 个多。我想获取点数组中的九个中点。
如何选择合适的?
希望你能明白我的意思
我已经在 OpenCV 中编写了执行此操作的代码。
基本过程和你一样,找到轮廓,然后剔除小的和非凸的轮廓。
在此之后,您可以遍历轮廓,对每个轮廓执行以下操作:
- 使用 Y 然后 X 坐标按升序对边界像素进行排序
- 迭代点。对于每个 Y,将每个 X 和下一个 X 之间的所有点添加到向量中。您现在有一个向量中包含的所有点的向量。您还可以使用它来计算质心并计算平均 RGB 颜色,如下所示:
下面是一些示例代码,但请注意它并不完整,但应该会给您一个大概的想法。
void meanColourOfContour( const Mat& frame, vector<Point> contour, Vec3b& colour, vector<Point>& pointsInContour ) {
sort(contour.begin(), contour.end(), pointSorter);
//
// Mean RGB values
//
int rsum = 0;
int gsum = 0;
int bsum = 0;
int index = 0;
Point lastP = contour[index++];
pointsInContour.push_back(lastP);
Vec3b rgbValue = frame.at<Vec3b>(lastP);
rsum += rgbValue[0];
gsum += rgbValue[1];
bsum += rgbValue[2];
int currentRow = lastP.y;
int lastX = lastP.x;
// For all remaining points in contour
while( index < contour.size() ) {
Point nextP = contour[index];
// Save it
pointsInContour.push_back(nextP);
// If we're on the same row, add in values of intervening points
if( nextP.y == currentRow ) {
for( int x = lastX; x < nextP.x; x++ ) {
Point p(x, currentRow);
pointsInContour.push_back(p);
rgbValue = frame.at<Vec3b>(p);
rsum += rgbValue[0];
gsum += rgbValue[1];
bsum += rgbValue[2];
}
}
// Add nextP
rgbValue = frame.at<Vec3b>(nextP);
rsum += rgbValue[0];
gsum += rgbValue[1];
bsum += rgbValue[2];
lastX = nextP.x;
currentRow = nextP.y;
index++;
}
// Calculate mean
size_t pointCount = pointsInContour.size();
colour =Vec3b( rsum/pointCount, gsum/pointCount, bsum/pointCount);
}
void extractFacelets( const Mat& frame, vector<tFacelet>& facelets) {
// Convert to Grey
Mat greyFrame;
cvtColor(frame, greyFrame, CV_BGR2GRAY);
blur( greyFrame, greyFrame, Size(3,3));
// Canny and find contours
Mat cannyOut;
Canny(greyFrame, cannyOut, 100, 200);
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(cannyOut, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE);
// Filter out non convex contours
for( int i=contours.size()-1; i>=0; i-- ) {
if( contourArea(contours[i]) < 400 ) {
contours.erase(contours.begin()+i);
}
}
// For each contour, calculate mean RGB and plot in output
int cindex = 0;
for( auto iter = contours.begin(); iter != contours.end(); iter ++ ) {
// Sort points in contour on ascending Y then X coord
vector<Point> contour = (vector<Point>)*iter;
vector<Vec3b> meanColours;
Vec3b meanColour;
vector<Point> pointsInContour;
meanColourOfContour(frame, contour, meanColour, pointsInContour);
meanColours.push_back(meanColour);
long x=0; long y=0;
for( auto iter=pointsInContour.begin(); iter != pointsInContour.end(); iter++ ) {
Point p = (Point) *iter;
x += p.x;
y += p.y;
}
tFacelet f;
f.centroid.x = (int) (x / pointsInContour.size());
f.centroid.y = (int) (y / pointsInContour.size());
f.colour = meanColour;
f.visible = true;
facelets.push_back(f);
}
}
我想检测魔方的颜色。这就是我想要的:Link
我能够使用 Open CV 的 findContours
功能识别 9 个彩色字段。
这是我的代码:
Mat input = new Mat(); //The image
Mat blur = new Mat();
Mat canny = new Mat();
Imgproc.GaussianBlur(input, blur, new Size(3,3), 1.5); //GaussianBlur to reduce noise
Imgproc.Canny(blur, canny, 60, 70); //Canny to detect the edges
Imgproc.GaussianBlur(canny, canny, new Size(3,3), 1.5); //Again GaussianBlur to reduce noise
List<MatOfPoint> contours = new ArrayList<>();
Mat hierachy = new Mat();
Imgproc.findContours(canny, contours, hierachy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); //Find contours
List<MatOfPoint2f> approxedShapes = new ArrayList<>();
for(MatOfPoint point : contours){
double area = Imgproc.contourArea(point);
if(area > 1000){
MatOfPoint2f shape = new MatOfPoint2f(point.toArray());
MatOfPoint2f approxedShape = new MatOfPoint2f();
double epsilon = Imgproc.arcLength(shape, true) / 10;
Imgproc.approxPolyDP(shape, approxedShape, epsilon, true); //"Smooth" the edges with approxPolyDP
approxedShapes.add(approxedShape);
}
}
//Visualisation
for(MatOfPoint2f point : approxedShapes){
RotatedRect rect = Imgproc.minAreaRect(new MatOfPoint2f(point.toArray()));
Imgproc.circle(input, rect.center, 5, new Scalar(0, 0, 255));
for(Point p : point.toArray()){
Imgproc.circle(input, p, 5, new Scalar(0,255,0));
}
}
这是“原始”源图像:
它产生这个输出(绿色圆圈:角;蓝色圆圈:矩形的中心):
如您所见,检测到的矩形比 9 个多。我想获取点数组中的九个中点。
如何选择合适的?
希望你能明白我的意思
我已经在 OpenCV 中编写了执行此操作的代码。
基本过程和你一样,找到轮廓,然后剔除小的和非凸的轮廓。
在此之后,您可以遍历轮廓,对每个轮廓执行以下操作:
- 使用 Y 然后 X 坐标按升序对边界像素进行排序
- 迭代点。对于每个 Y,将每个 X 和下一个 X 之间的所有点添加到向量中。您现在有一个向量中包含的所有点的向量。您还可以使用它来计算质心并计算平均 RGB 颜色,如下所示:
下面是一些示例代码,但请注意它并不完整,但应该会给您一个大概的想法。
void meanColourOfContour( const Mat& frame, vector<Point> contour, Vec3b& colour, vector<Point>& pointsInContour ) {
sort(contour.begin(), contour.end(), pointSorter);
//
// Mean RGB values
//
int rsum = 0;
int gsum = 0;
int bsum = 0;
int index = 0;
Point lastP = contour[index++];
pointsInContour.push_back(lastP);
Vec3b rgbValue = frame.at<Vec3b>(lastP);
rsum += rgbValue[0];
gsum += rgbValue[1];
bsum += rgbValue[2];
int currentRow = lastP.y;
int lastX = lastP.x;
// For all remaining points in contour
while( index < contour.size() ) {
Point nextP = contour[index];
// Save it
pointsInContour.push_back(nextP);
// If we're on the same row, add in values of intervening points
if( nextP.y == currentRow ) {
for( int x = lastX; x < nextP.x; x++ ) {
Point p(x, currentRow);
pointsInContour.push_back(p);
rgbValue = frame.at<Vec3b>(p);
rsum += rgbValue[0];
gsum += rgbValue[1];
bsum += rgbValue[2];
}
}
// Add nextP
rgbValue = frame.at<Vec3b>(nextP);
rsum += rgbValue[0];
gsum += rgbValue[1];
bsum += rgbValue[2];
lastX = nextP.x;
currentRow = nextP.y;
index++;
}
// Calculate mean
size_t pointCount = pointsInContour.size();
colour =Vec3b( rsum/pointCount, gsum/pointCount, bsum/pointCount);
}
void extractFacelets( const Mat& frame, vector<tFacelet>& facelets) {
// Convert to Grey
Mat greyFrame;
cvtColor(frame, greyFrame, CV_BGR2GRAY);
blur( greyFrame, greyFrame, Size(3,3));
// Canny and find contours
Mat cannyOut;
Canny(greyFrame, cannyOut, 100, 200);
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(cannyOut, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE);
// Filter out non convex contours
for( int i=contours.size()-1; i>=0; i-- ) {
if( contourArea(contours[i]) < 400 ) {
contours.erase(contours.begin()+i);
}
}
// For each contour, calculate mean RGB and plot in output
int cindex = 0;
for( auto iter = contours.begin(); iter != contours.end(); iter ++ ) {
// Sort points in contour on ascending Y then X coord
vector<Point> contour = (vector<Point>)*iter;
vector<Vec3b> meanColours;
Vec3b meanColour;
vector<Point> pointsInContour;
meanColourOfContour(frame, contour, meanColour, pointsInContour);
meanColours.push_back(meanColour);
long x=0; long y=0;
for( auto iter=pointsInContour.begin(); iter != pointsInContour.end(); iter++ ) {
Point p = (Point) *iter;
x += p.x;
y += p.y;
}
tFacelet f;
f.centroid.x = (int) (x / pointsInContour.size());
f.centroid.y = (int) (y / pointsInContour.size());
f.colour = meanColour;
f.visible = true;
facelets.push_back(f);
}
}