sklearn select threshold steps in precision recall curve 如何?

How does sklearn select threshold steps in precision recall curve?

我在一个示例乳腺癌数据集上训练了一个基本的 FFNN。对于结果,precision_recall_curve 函数给出了 416 个不同阈值的数据点。我的数据包含 569 个独特的预测值,据我了解 Precision Recall 曲线,我可以应用 568 个不同的阈值并检查结果 Precision 和 Recall。

但是我该怎么做呢?有没有一种方法可以设置要使用 sklearn 进行测试的阈值数量?或者至少解释一下 sklearn 如何选择这些阈值?

我的意思是417应该足够了,即使对于更大的数据集,我只是好奇他们是如何被选中的。

# necessary packages
from sklearn.datasets import load_breast_cancer
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout

# load data
sk_data = load_breast_cancer(return_X_y=False)

# safe data in pandas
data = sk_data['data']
target = sk_data['target']
target_names = sk_data['target_names']
feature_names = sk_data['feature_names']
data = pd.DataFrame(data=data, columns=feature_names)

# build ANN
model = Sequential()
model.add(Dense(64, kernel_initializer='random_uniform', input_dim=30, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(32, kernel_initializer='random_uniform', activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(1, activation='sigmoid'))

# train ANN
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()

model.fit(data, target, epochs=50, batch_size=10, validation_split=0.2)

# eval
pred = model.predict(data)

# calculate precision-recall curve
from sklearn.metrics import precision_recall_curve
precision, recall, thresholds = precision_recall_curve(target, pred)

# precision-recall curve and f1
import matplotlib.pyplot as plt

#pyplot.plot([0, 1], [0.5, 0.5], linestyle='--')
plt.plot(recall, precision, marker='.')
# show the plot
plt.show()

len(np.unique(pred)) #569
len(thresholds) # 417

读取 sourceprecision_recall_curve 确实会计算每个唯一预测概率的精度和召回率(此处 pred),但随后会忽略导致完全召回率的所有阈值的输出(除了实现完全召回的第一个门槛)。