Error: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting
Error: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting
所以我有一个包含两列的 CSV 文件:日期和价格,但是当我尝试在该时间序列上使用 ARIMA 时,我遇到了这个错误:
ValueWarning: A date index has been provided, but it has no associated
frequency information and so will be ignored when e.g. forecasting.
' ignored when e.g. forecasting.', ValueWarning)
所以我发现了这两个问题:
ValueWarning: No frequency information was provided, so inferred frequency MS will be used
但是当我尝试 运行 示例中的代码时(第二个 link ):
import pandas as pd
from statsmodels.tsa.arima_model import ARMA
df=pd.DataFrame({"val": pd.Series([1.1,1.7,8.4 ],
index=['2015-01-15 12:10:23','2015-02-15 12:10:23','2015-03-15 12:10:23'])})
print df
'''
val
2015-01-15 12:10:23 1.1
2015-02-15 12:10:23 1.7
2015-03-15 12:10:23 8.4
'''
print df.index
'''
Index([u'2015-01-15 12:10:23',u'2015-02-15 12:10:23',u'2015-03-15 12:10:23'], dtype='object')
'''
df.index = pd.DatetimeIndex(df.index)
print df.index
'''
DatetimeIndex(['2015-01-15 12:10:23', '2015-02-15 12:10:23',
'2015-03-15 12:10:23'],
dtype='datetime64[ns]', freq=None)
'''
model = ARMA(df["val"], (1,0))
print model
我也收到了相同的 ValueWarning,所以我尝试更改此行:
df.index = pd.DatetimeIndex(df.index)
对此:
df.index = pd.DatetimeIndex(df.index.values, freq=df.index.inferred_freq)
但是我得到这个错误:
AttributeError: 'Index' object has no attribute 'inferred_freq'
您当前的索引,如打印的那样,是字符串索引。您应该将其转换为 DatetimeIndex
并通过 to_period
:
传递频率
df.index = pd.DatetimeIndex(df.index).to_period('M')
如果您的时间序列不规则,您最终可能会收到这样的错误。
"ValueError: Inferred frequency None from passed values does not
conform to passed frequency M"
根据您想对数据执行的操作,您可以尝试不同的操作。
对我有用的是 pandas resampling, better explained here.
所以我有一个包含两列的 CSV 文件:日期和价格,但是当我尝试在该时间序列上使用 ARIMA 时,我遇到了这个错误:
ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.
' ignored when e.g. forecasting.', ValueWarning)
所以我发现了这两个问题:
ValueWarning: No frequency information was provided, so inferred frequency MS will be used
但是当我尝试 运行 示例中的代码时(第二个 link ):
import pandas as pd
from statsmodels.tsa.arima_model import ARMA
df=pd.DataFrame({"val": pd.Series([1.1,1.7,8.4 ],
index=['2015-01-15 12:10:23','2015-02-15 12:10:23','2015-03-15 12:10:23'])})
print df
'''
val
2015-01-15 12:10:23 1.1
2015-02-15 12:10:23 1.7
2015-03-15 12:10:23 8.4
'''
print df.index
'''
Index([u'2015-01-15 12:10:23',u'2015-02-15 12:10:23',u'2015-03-15 12:10:23'], dtype='object')
'''
df.index = pd.DatetimeIndex(df.index)
print df.index
'''
DatetimeIndex(['2015-01-15 12:10:23', '2015-02-15 12:10:23',
'2015-03-15 12:10:23'],
dtype='datetime64[ns]', freq=None)
'''
model = ARMA(df["val"], (1,0))
print model
我也收到了相同的 ValueWarning,所以我尝试更改此行:
df.index = pd.DatetimeIndex(df.index)
对此:
df.index = pd.DatetimeIndex(df.index.values, freq=df.index.inferred_freq)
但是我得到这个错误:
AttributeError: 'Index' object has no attribute 'inferred_freq'
您当前的索引,如打印的那样,是字符串索引。您应该将其转换为 DatetimeIndex
并通过 to_period
:
df.index = pd.DatetimeIndex(df.index).to_period('M')
如果您的时间序列不规则,您最终可能会收到这样的错误。
"ValueError: Inferred frequency None from passed values does not conform to passed frequency M"
根据您想对数据执行的操作,您可以尝试不同的操作。
对我有用的是 pandas resampling, better explained here.