如何在年龄类别中重新编码连续年龄并同时创建新变量

How to recode continuous age in age categories and create a new variable at the same time

我有一个年龄变量,我需要将其重新编码为类别。我已经看到了这两个问题,但答案似乎只是在记忆中创造了一些东西。当我打开 data.table 时,新的分类变量不存在。我看不到它,也无法对其进行子集化。但我可以 运行 一个频率。但我需要它成为自己的变量。

R code to categorize age into group/ bins/ breaks

Convert Age variable into ordinal variable

如何将一个连续变量转换为一个因子,然后得到一个有形变量? 或者,我如何获取内存中正在创建的任何内容,并将其变为现实?

`setDT(LSSCM)[client_age <17, agegroup := "0-17"]`
`LSSCM[client_age >=18 & client_age <=24, agegroup := "18-24"]`
`LSSCM[client_age >=25 & client_age <=30, agegroup := "25-30"]`
`LSSCM[client_age >=31 & client_age <=39, agegroup := "31-39"]`
`LSSCM[client_age >=40 & client_age <=54, agegroup := "40-54"]`
`LSSCM[client_age >=55 & client_age <=64, agegroup := "55-64"]`
`LSSCM[client_age >=65 & client_age <=75, agegroup := "65-75"]`
`LSSCM[client_age >=76, agegroup := "76+"]`

也试过了

LSSCM$age_cat <- case_when(LSSCM$client_age <= 17 ~ '0-17',
                           between(LSSCM$client_age, 18, 24) ~ '18-24',`
                           between(LSSCM$client_age, 25, 30) ~ '25-30',`
                           between(LSSCM$client_age, 31, 39) ~ '31-39',`
                           between(LSSCM$client_age, 40, 54) ~ '40-54',`
                           between(LSSCM$client_age, 55, 64) ~ '55-64',`
                           between(LSSCM$client_age, 65, 75) ~ '65-75',`
                           LSSCM$client_age >= 76 ~ '76+')`

只需将您首选解决方案的结果分配到 data.frame 中的列中。例如:

df$agegroups<-cut(df$ages, breaks=c(20, 30, 40, 50), right = FALSE)

例如:

df<-data.frame(age = c(55, 60, 65, 70, 75, 80, 85, 90, 95))
df
  age
1  55
2  60
3  65
4  70
5  75
6  80
7  85
8  90
9  95
df$age_cat<-cut(df$age, breaks=c(0,17,24,30,39,54,64,75), right = FALSE)
df
  age age_cat
1  55 [54,64)
2  60 [54,64)
3  65 [64,75)
4  70 [64,75)
5  75    <NA>
6  80    <NA>
7  85    <NA>
8  90    <NA>
9  95    <NA>