40000个排列的差异表达数据Spearman相关性如何计算p值和相关系数?

How to calculate p value and correlation coefficient for Spearman’s correlation of differential expression data with 40000 permutations?

我有 3 个组,我们称它们为 g1、g2、g3。每一个都是条件组间分析的结果,g1是这样的

                   geneSymbol      logFC         t      P.Value   adj.P.Val         Beta
EXykpF1BRREdXnv9Xk      MKI67 -0.3115880 -5.521186 5.772137e-07 0.008986062 4.3106665
0Tm7hdRJxd9zoevPlA     CCL3L3  0.1708020  4.162115 9.109798e-05 0.508784638 0.6630544
u_M5UdFdhg3lZ.qe64     UBE2G1 -0.1528149 -4.031466 1.430822e-04 0.508784638 0.3354065
lkkLCXcnzL9NXFXTl4     SEL1L3 -0.2138729 -3.977482 1.720517e-04 0.508784638 0.2015945
0Uu3XrB6Bd14qoNeuc      ZFP36  0.1667330  3.944917 1.921715e-04 0.508784638 0.1213335
3h7Sgq2i3sAUkxL_n8      ITGB5  0.3419488  3.938960 1.960886e-04 0.508784638 0.1066896

g2 和 g2 看起来一样,每个都有 15568 个条目(基因)

如何计算此数据 40000 次排列的 Spearman 相关性的 p 值和相关系数?

我加入了所有 3 个组,g1、g2、g3,并且只提取了 Beta (B)

我得到了这个数据框,匹配了 15568 个条目:

                     Beta1       Beta2    Beta3
EXykpF1BRREdXnv9Xk -4.970533 -4.752771 -5.404054
0Tm7hdRJxd9zoevPlA -4.862168 -5.147294 -3.909654
u_M5UdFdhg3lZ.qe64 -5.368846 -5.396183 -5.405330
lkkLCXcnzL9NXFXTl4 -4.367704 -4.847795 -5.148524
0Uu3XrB6Bd14qoNeuc -5.286592 -4.949305 -5.278798
3h7Sgq2i3sAUkxL_n8 -4.579528 -2.403240 -4.710600

要计算 Spearman,我可以在 R 中使用:

> cor(d,use="pairwise.complete.obs",method="spearman")
        Beta1          Beta2        Beta3
Beta1 1.000000000  0.234171932  0.002474729
Beta2 0.234171932  1.000000000 -0.005469126
Beta3 0.002474729 -0.005469126  1.000000000

有人可以告诉我使用什么方法来获得考虑排列数的相关系数和 p 值?为了在这 3 个组之间进行关联,我使用 Beta 是否正确?

谢谢!

使用 psych 包访问 correlation coefficientp-value 的提示。我将使用 mtcars 数据集而不是重新输入您的数据集,因为它不是简单的 copy-paste (dput(df)) 格式。

library(psych)
corr.test.col.1to4 <- corr.test(mtcars[1:4], method = "spearman", use = "complete.obs")
names(corr.test.col.1to4)
#1] "r"      "n"      "t"      "p"      "se"     "sef"    "adjust" "sym"    "ci"     "ci.adj"
# [11] "Call"  

# -------------------------------------------------------------------------
# in your case you probably want to do

#cor.test.beta <- corr.test(d[c("Beta1","Beta2", "Beta3")], method = "spearman", use = "complete.obs")

# -------------------------------------------------------------------------


names(corr.test.col.1to4)的输出可以看出:

r: correlation coefficient

n: number of observation

p: p.value

se: standard error

ci: confidence intervals

所以,如果你想要相关系数,你可以使用

提取值
corr.test.col.1to4$r
#             mpg        cyl       disp         hp
# mpg   1.0000000 -0.9108013 -0.9088824 -0.8946646
# cyl  -0.9108013  1.0000000  0.9276516  0.9017909
# disp -0.9088824  0.9276516  1.0000000  0.8510426
# hp   -0.8946646  0.9017909  0.8510426  1.0000000

p-values

corr.test.col.1to4$p
#               mpg          cyl         disp           hp
# mpg  0.000000e+00 2.345144e-12 2.548135e-12 1.017194e-11
# cyl  4.690287e-13 0.000000e+00 1.365266e-13 5.603057e-12
# disp 6.370336e-13 2.275443e-14 0.000000e+00 6.791338e-10
# hp   5.085969e-12 1.867686e-12 6.791338e-10 0.000000e+00

标准误

corr.test.col.1to4$se
#             mpg        cyl       disp         hp
# mpg  0.00000000 0.07537483 0.07614303 0.08156289
# cyl  0.07537483 0.00000000 0.06818175 0.07890355
# disp 0.07614303 0.06818175 0.00000000 0.09586909
# hp   0.08156289 0.07890355 0.09586909 0.00000000

置信区间

corr.test.col.1to4$ci
#               lower          r      upper            p
# mpg-cyl  -0.9559077 -0.9108013 -0.8237102 4.690287e-13
# mpg-disp -0.9549362 -0.9088824 -0.8200941 6.370336e-13
# mpg-hp   -0.9477078 -0.8946646 -0.7935207 5.085969e-12
# cyl-disp  0.8557708  0.9276516  0.9643958 2.275443e-14
# cyl-hp    0.8067919  0.9017909  0.9513377 1.867686e-12
# disp-hp   0.7143279  0.8510426  0.9251848 6.791338e-10

您可以将输出保存在变量上并进行进一步的格式化以使报告公正。

你的第二个问题为了在这 3 个组之间进行关联,我使用 Beta 是否正确? 是一个有效的问题,你需要 answer/address 取决于您要回答的问题,并以在变量 Beta 上计算 corr 并证明在您的报告中选择变量 Beta 的方式进行报告。

希望对您有所帮助。