Wait.On() 在 Apache Beam Python SDK 版本上

Wait.On() on Apache Beam Python SDK version

我在 Python 上使用 Apache Beam,想问一下 python SDK 上的 Apache Beam Java Wait.on() 的等价物是什么?

目前我遇到以下代码片段的问题

    if len(output_pcoll) > 1:
        merged = (tuple(output_pcoll) |
                  'MergePCollections1' >> beam.Flatten())
    else:
        merged = output_pcoll[0]

    outlier_side_input = self.construct_outlier_side_input(merged)

    (merged |
     "RemoveOutlier" >>
     beam.ParDo(utils.Remove_Outliers(),
                beam.pvalue.AsDict(outlier_side_input)) |
     "WriteToCSV" >>
     beam.io.WriteToText('../../ML-DATA/{0}.{1}'.format(self.BUCKET,
                         self.OUTPUT), num_shards=1))

Apache Beam 似乎没有等到 self.construct_outlier_side_input 上的代码执行完毕,并在下一个管道中执行 "RemoveOutlier" 时导致空侧输入。在Java版本中你可以使用Wait.On()等待construct_outlier_side_input完成执行,但是我在Python SDK中找不到等效的方法。

--编辑-- 我要实现的目标与此 link 中的几乎相同, https://rmannibucau.metawerx.net/post/apache-beam-initialization-destruction-task

您可以使用 Beam 的附加输出功能来执行此操作。

示例代码片段如下

results = (words | beam.ParDo(ProcessWords(), cutoff_length=2, marker='x')
           .with_outputs('above_cutoff_lengths', 'marked strings',
                         main='below_cutoff_strings'))
below = results.below_cutoff_strings
above = results.above_cutoff_lengths
marked = results['marked strings']  # indexing works as well

一旦你 运行 上面的代码片段,你就会得到多个 PCollection,例如 below,above 和 marked。然后,您可以使用辅助输入进一步过滤或加入结果

希望对您有所帮助。

更新

根据评论,我想提一下 Apache Beam 有能力在 ValueStateBagState 的帮助下进行状态处理。如果要求是通读 PCollection 然后根据是否存在先验值做出决定,那么可以通过 BagState 处理此类要求,如下所示:-

def process(self,
              element,
              timestamp=beam.DoFn.TimestampParam,
              window=beam.DoFn.WindowParam,
              buffer_1=beam.DoFn.StateParam(BUFFER_STATE_1),
              buffer_2=beam.DoFn.StateParam(BUFFER_STATE_2),
              watermark_timer=beam.DoFn.TimerParam(WATERMARK_TIMER)):

    # Do you processing here
    key, value = element
    # Read all the data from buffer1
    all_values_in_buffer_1 = [x for x in buffer_1.read()]

    if StatefulDoFn._is_clear_buffer_1_required(all_values_in_buffer_1):
        # clear the buffer data if required conditions are met.
        buffer_1.clear()

    # add the value to buffer 2
    buffer_2.add(value)

    if StatefulDoFn._all_condition_met():
      # Clear the timer if certain condition met and you don't want to trigger
      # the callback method.
      watermark_timer.clear()

    yield element

  @on_timer(WATERMARK_TIMER)
  def on_expiry_1(self,
                  timestamp=beam.DoFn.TimestampParam,
                  window=beam.DoFn.WindowParam,
                  key=beam.DoFn.KeyParam,
                  buffer_1=beam.DoFn.StateParam(BUFFER_STATE_1),
                  buffer_2=beam.DoFn.StateParam(BUFFER_STATE_2)):
    # Window and key parameters are really useful especially for debugging issues.
    yield 'expired1'