如何动态编辑外部 .config 文件?
How to dynamically edit an external .config file?
我正在使用 tensorflow 对象检测开发主动机器学习管道 api。
我的目标是动态更改网络 .config 文件中的路径。
标准配置如下所示:
train_input_reader: {
tf_record_input_reader {
input_path: "/PATH_TO_CONFIGURE/train.record"
}
label_map_path: "/PATH_TO_CONFIGURE/label_map.pbtxt"
}
"PATH_TO_CONFIGURE" 应该从我的 jupyter notebook 单元格中动态替换。
对象检测 API 配置文件具有 protobuf
格式。以下是您阅读、编辑和保存它们的大致方法。
import tensorflow as tf
from google.protobuf import text_format
from object_detection.protos import pipeline_pb2
pipeline = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile('config path', "r") as f:
proto_str = f.read()
text_format.Merge(proto_str, pipeline)
pipeline.train_input_reader.tf_record_input_reader.input_path[:] = ['your new entry'] # it's a repeated field
pipeline.train_input_reader.label_map_path = 'your new entry'
config_text = text_format.MessageToString(pipeline)
with tf.gfile.Open('config path', "wb") as f:
f.write(config_text)
您将不得不调整代码,但一般原理应该很清楚。我建议将其重构为函数并调用 Jupyter。
以下是对我适用的 TensorFlow 2(API 从 tf.gfile.GFile
略微更改为 tf.io.gfile.GFile
):
import tensorflow as tf
from google.protobuf import text_format
from object_detection.protos import pipeline_pb2
def read_config():
pipeline = pipeline_pb2.TrainEvalPipelineConfig()
with tf.io.gfile.GFile('pipeline.config', "r") as f:
proto_str = f.read()
text_format.Merge(proto_str, pipeline)
return pipeline
def write_config(pipeline):
config_text = text_format.MessageToString(pipeline)
with tf.io.gfile.GFile('pipeline.config', "wb") as f:
f.write(config_text)
def modify_config(pipeline):
pipeline.model.ssd.num_classes = 1
pipeline.train_config.fine_tune_checkpoint_type = 'detection'
pipeline.train_input_reader.label_map_path = 'label_map.pbtxt'
pipeline.train_input_reader.tf_record_input_reader.input_path[0] = 'train.record'
pipeline.eval_input_reader[0].label_map_path = 'label_map.pbtxt'
pipeline.eval_input_reader[0].tf_record_input_reader.input_path[0] = 'test.record'
return pipeline
def setup_pipeline():
pipeline = read_config()
pipeline = modify_config(pipeline)
write_config(pipeline)
setup_pipeline()
我正在使用 tensorflow 对象检测开发主动机器学习管道 api。 我的目标是动态更改网络 .config 文件中的路径。
标准配置如下所示:
train_input_reader: {
tf_record_input_reader {
input_path: "/PATH_TO_CONFIGURE/train.record"
}
label_map_path: "/PATH_TO_CONFIGURE/label_map.pbtxt"
}
"PATH_TO_CONFIGURE" 应该从我的 jupyter notebook 单元格中动态替换。
对象检测 API 配置文件具有 protobuf
格式。以下是您阅读、编辑和保存它们的大致方法。
import tensorflow as tf
from google.protobuf import text_format
from object_detection.protos import pipeline_pb2
pipeline = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile('config path', "r") as f:
proto_str = f.read()
text_format.Merge(proto_str, pipeline)
pipeline.train_input_reader.tf_record_input_reader.input_path[:] = ['your new entry'] # it's a repeated field
pipeline.train_input_reader.label_map_path = 'your new entry'
config_text = text_format.MessageToString(pipeline)
with tf.gfile.Open('config path', "wb") as f:
f.write(config_text)
您将不得不调整代码,但一般原理应该很清楚。我建议将其重构为函数并调用 Jupyter。
以下是对我适用的 TensorFlow 2(API 从 tf.gfile.GFile
略微更改为 tf.io.gfile.GFile
):
import tensorflow as tf
from google.protobuf import text_format
from object_detection.protos import pipeline_pb2
def read_config():
pipeline = pipeline_pb2.TrainEvalPipelineConfig()
with tf.io.gfile.GFile('pipeline.config', "r") as f:
proto_str = f.read()
text_format.Merge(proto_str, pipeline)
return pipeline
def write_config(pipeline):
config_text = text_format.MessageToString(pipeline)
with tf.io.gfile.GFile('pipeline.config', "wb") as f:
f.write(config_text)
def modify_config(pipeline):
pipeline.model.ssd.num_classes = 1
pipeline.train_config.fine_tune_checkpoint_type = 'detection'
pipeline.train_input_reader.label_map_path = 'label_map.pbtxt'
pipeline.train_input_reader.tf_record_input_reader.input_path[0] = 'train.record'
pipeline.eval_input_reader[0].label_map_path = 'label_map.pbtxt'
pipeline.eval_input_reader[0].tf_record_input_reader.input_path[0] = 'test.record'
return pipeline
def setup_pipeline():
pipeline = read_config()
pipeline = modify_config(pipeline)
write_config(pipeline)
setup_pipeline()