替换 tensorflow v2 的占位符

Replacing placeholder for tensorflow v2

对于我的项目,我需要将有向图转换为该图的张量流实现,就好像它是一个神经网络一样。在 tensorflow 版本 1 中,我可以将所有输入定义为占位符,然后使用图的广度优先搜索为输出生成数据流图。然后我会使用 feed_dict 输入我的输入。但是,在 TensorFlow v2.0 中,他们决定完全取消占位符。

如何在不使用占位符的情况下为每个接受可变输入量和 returns 可变输出量的图表制作 tf.function?

我想生成一个像这样的 tf.function 适用于任意无环有向图,这样我就可以利用 tensorflow GPU 支持 运行 将图前馈几千次生成后的一行。


编辑代码示例:

我的图表被定义为字典。每个键代表一个节点,并具有另一个字典的对应值,该字典指定带有权重的传入和传出链接。

{
    "A": {
        "incoming": [("B", 2), ("C", -1)],
        "outgoing": [("D", 3)]
    }
}

为简洁起见,我省略了 B、C 和 D 的条目。 这是我在 tensorflow v1.0 中构建我想要的代码的方式,其中输入只是严格输入到图形的键值列表

def construct_graph(graph_dict, inputs, outputs):
    queue = inputs[:]
    make_dict = {}
    for key, val in graph_dict.items():
        if key in inputs:
            make_dict[key] = tf.placeholder(tf.float32, name=key)
        else:
            make_dict[key] = None
    # Breadth-First search of graph starting from inputs
    while len(queue) != 0:
        cur = graph_dict[queue[0]]
        for outg in cur["outgoing"]:
            if make_dict[outg[0]]: # If discovered node, do add/multiply operation
                make_dict[outg[0]] = tf.add(make_dict[outg[0]], tf.multiply(outg[1], make_dict[queue[0]]))
            else: # If undiscovered node, input is just coming in multiplied and add outgoing to queue
                make_dict[outg[0]] = tf.multiply(make_dict[queue[0]], outg[1])
                for outgo in graph_dict[outg[0]]["outgoing"]:
                    queue.append(outgo[0])
        queue.pop(0)
    # Returns one data graph for each output
    return [make_dict[x] for x in outputs]

然后我将能够多次 运行 输出,因为它们只是带有占位符的图表,我会为其提供 feed_dict。

显然,这不是 TensorFlow v2.0 的预期方式,因为他们似乎强烈反对在此新版本中使用占位符。

关键是我只需要对图进行一次预处理,因为它 returns 是一个独立于 graph_dict 定义的数据图。

使您的代码适用于 TF 2.0

下面是您可以在 TF 2.0 中使用的示例代码。 它依赖于 compatibility API 可以 tensorflow.compat.v1 访问,需要 disable v2 behaviors。 我不知道它的行为是否如你所料。 如果没有,请向我们提供更多关于您尝试实现的目标的解释。

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

@tf.function
def construct_graph(graph_dict, inputs, outputs):
    queue = inputs[:]
    make_dict = {}
    for key, val in graph_dict.items():
        if key in inputs:
            make_dict[key] = tf.placeholder(tf.float32, name=key)
        else:
            make_dict[key] = None
    # Breadth-First search of graph starting from inputs
    while len(queue) != 0:
        cur = graph_dict[queue[0]]
        for outg in cur["outgoing"]:
            if make_dict[outg[0]]: # If discovered node, do add/multiply operation
                make_dict[outg[0]] = tf.add(make_dict[outg[0]], tf.multiply(outg[1], make_dict[queue[0]]))
            else: # If undiscovered node, input is just coming in multiplied and add outgoing to queue
                make_dict[outg[0]] = tf.multiply(make_dict[queue[0]], outg[1])
                for outgo in graph_dict[outg[0]]["outgoing"]:
                    queue.append(outgo[0])
        queue.pop(0)
    # Returns one data graph for each output
    return [make_dict[x] for x in outputs]

def main():
    graph_def = {
        "B": {
            "incoming": [],
            "outgoing": [("A", 1.0)]
        },
        "C": {
            "incoming": [],
            "outgoing": [("A", 1.0)]
        },
        "A": {
            "incoming": [("B", 2.0), ("C", -1.0)],
            "outgoing": [("D", 3.0)]
        },
        "D": {
            "incoming": [("A", 2.0)],
            "outgoing": []
        }
    }
    outputs = construct_graph(graph_def, ["B", "C"], ["A"])
    print(outputs)

if __name__ == "__main__":
    main()
[<tf.Tensor 'PartitionedCall:0' shape=<unknown> dtype=float32>]

将您的代码迁移到 TF 2.0

虽然上面的代码片段是有效的,但它仍然与 TF 1.0 相关联。 要将它迁移到 TF 2.0,您必须稍微重构一下您的代码。

我建议您 return 不是 return 使用 TF 1.0 调用的张量列表,而是 return keras.layers.Model.

下面是一个工作示例:

import tensorflow as tf

def construct_graph(graph_dict, inputs, outputs):
    queue = inputs[:]
    make_dict = {}
    for key, val in graph_dict.items():
        if key in inputs:
            # Use keras.Input instead of placeholders
            make_dict[key] = tf.keras.Input(name=key, shape=(), dtype=tf.dtypes.float32)
        else:
            make_dict[key] = None
    # Breadth-First search of graph starting from inputs
    while len(queue) != 0:
        cur = graph_dict[queue[0]]
        for outg in cur["outgoing"]:
            if make_dict[outg[0]] is not None: # If discovered node, do add/multiply operation
                make_dict[outg[0]] = tf.keras.layers.add([
                    make_dict[outg[0]],
                    tf.keras.layers.multiply(
                        [[outg[1]], make_dict[queue[0]]],
                    )],
                )
            else: # If undiscovered node, input is just coming in multiplied and add outgoing to queue
                make_dict[outg[0]] = tf.keras.layers.multiply(
                    [make_dict[queue[0]], [outg[1]]]
                )
                for outgo in graph_dict[outg[0]]["outgoing"]:
                    queue.append(outgo[0])
        queue.pop(0)
    # Returns one data graph for each output
    model_inputs = [make_dict[key] for key in inputs]
    model_outputs = [make_dict[key] for key in outputs]
    return [tf.keras.Model(inputs=model_inputs, outputs=o) for o in model_outputs]

def main():
    graph_def = {
        "B": {
            "incoming": [],
            "outgoing": [("A", 1.0)]
        },
        "C": {
            "incoming": [],
            "outgoing": [("A", 1.0)]
        },
        "A": {
            "incoming": [("B", 2.0), ("C", -1.0)],
            "outgoing": [("D", 3.0)]
        },
        "D": {
            "incoming": [("A", 2.0)],
            "outgoing": []
        }
    }
    outputs = construct_graph(graph_def, ["B", "C"], ["A"])
    print("Builded models:", outputs)
    for o in outputs:
        o.summary(120)
        print("Output:", o((1.0, 1.0)))

if __name__ == "__main__":
    main()

这里要注意什么?

  • placeholder更改为keras.Input,需要设置输入的形状。
  • 使用keras.layers.[add|multiply]进行计算。 这可能不是必需的,但请坚持使用一个界面。 但是,它需要将因素包装在列表中(以处理批处理)
  • 构建 keras.Model 到 return
  • 使用值元组(不再是字典)调用您的模型

这是代码的输出。

Builded models: [<tensorflow.python.keras.engine.training.Model object at 0x7fa0b49f0f50>]
Model: "model"
________________________________________________________________________________________________________________________
Layer (type)                           Output Shape               Param #       Connected to                            
========================================================================================================================
B (InputLayer)                         [(None,)]                  0                                                     
________________________________________________________________________________________________________________________
C (InputLayer)                         [(None,)]                  0                                                     
________________________________________________________________________________________________________________________
tf_op_layer_mul (TensorFlowOpLayer)    [(None,)]                  0             B[0][0]                                 
________________________________________________________________________________________________________________________
tf_op_layer_mul_1 (TensorFlowOpLayer)  [(None,)]                  0             C[0][0]                                 
________________________________________________________________________________________________________________________
add (Add)                              (None,)                    0             tf_op_layer_mul[0][0]                   
                                                                                tf_op_layer_mul_1[0][0]                 
========================================================================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
________________________________________________________________________________________________________________________
Output: tf.Tensor([2.], shape=(1,), dtype=float32)