此 TensorFlow 二进制文件使用英特尔(R) MKL-DNN 进行了优化,以在性能关键中使用以下 CPU 指令

This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance critical

我想在 Ubuntu 上安装 tensorflow,我收到了这条消息:

(base) k@k-1005:~/Documents/ClassificationTexte/src$ python tester.py 
Using TensorFlow backend.


RUN: 1
  1.1. Training the classifier...
LABELS: {'negative', 'neutral', 'positive'}
2019-12-10 11:58:13.428875: I tensorflow/core/platform/cpu_feature_guard.cc:145] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance critical operations:  SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in non-MKL-DNN operations, rebuild TensorFlow with the appropriate compiler flags.
2019-12-10 11:58:13.432727: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3190585000 Hz
2019-12-10 11:58:13.433041: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5591c387b750 executing computations on platform Host. Devices:
2019-12-10 11:58:13.433098: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): Host, Default Version
2019-12-10 11:58:13.433182: I tensorflow/core/common_runtime/process_util.cc:115] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
Model: "model_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         (None, 8000)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 3)                 24003     


但是脚本可以运行并显示准确性,但是上面的这部分显示在运行之前。你知道吗,我在 anaconda 上安装了 tensorflow :

上面的警告被抛出是因为 TensorFlow 库最初是在不同架构的机器上编译的,并没有针对您的特定架构进行优化。这意味着它将继续运行,但您不会从库中获得最大性能。

要在您的机器上获得最大性能,您需要在您的机器上构建 TensorFlow。

参考 official documentation 了解从源代码构建的步骤。

官方文档:https://www.tensorflow.org/install/source

如果您对看到这些错误不感兴趣,请在 运行 您的脚本

之前使用它
export TF_CPP_MIN_LOG_LEVEL=2

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

在你的脚本中。

更新: 代码中更简洁的方式:tf.get_logger().setLevel('ERROR')