Pandas 替换列中的值,但 to_replace 参数是一个包含元组的元组

Pandas replacing values in columns, but to_replace argument is a tuple containing tuples

我正在解码 NLSY 79 的值。它们是职业性行业。每个行业都有一些职业;例如:从 17 到 29 的所有职业都属于农业、林业和渔业。我尝试了三种策略,但有两个 return 错误,第三个没有将值存储在数据框中。

执行代码如下(受访者最多列出5个职位,所有职位都包含在数据中)

df[['Job1', 'Job2', 'Job3', 'Job4', 'Job5']].replace(to_replace=jobs['code'], value=jobs['true'], inplace=True)

策略 1

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

jobs = {'code': ( tuple(range(17,29)), ... )
        'true': ( 'Agriculture, Forestry & Fisheries', ... )

策略 2

TypeError: Cannot compare types 'ndarray(dtype=float64)' and 'range'

jobs = {'code': ( range(17,29), ... )
        'true': ( 'Agriculture, Forestry & Fisheries', ... )

策略 3

SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

jobs = {'code': ( any(tuple(range(17, 29))), any(tuple(range(47, 58))), ... )
        'true': ( 'Agriculture, Forestry & Fisheries', 'Mining', ... )

我认为对第三个 strategy/execution 代码进行调整是最好的,但我对编码仍然是新手,不确定它会是什么。关于如何解决这个问题有什么建议吗?

Input:
        Job1      ...  
0       339       ...  
1       757       ...  
2       739       ...  
3       448       ...  

Desired Output:

        Job1            ...  
0       Utilities       ...  
1       Professional    ...  
2       Professional    ...  
3       Retail          ...

job = {'code': (list(range(17, 29)),
                   list(range(47, 58)),
                   list(range(67, 78)), ...)
       'true': ('Agriculture, Forestry & Fisheries',
                  'Mining',
                  'Construction', ...)}

解决了。不是最快的方法,但它有效。

job = {'code': (list(range(17, 29)), ...),  
       'true': ('Agriculture, Forestry & Fisheries', ...)}  

    for i, x in enumerate(job['code']):  
        for key in df_jobs:  
            df[key].replace(to_replace=x, value=[job['true'][i]]*len(x), inplace=True)  

试试这个:

df1
        Job1
0       20
1       50
2       70

job = {'code': (list(range(17, 29)),
                   list(range(47, 58)),
                   list(range(67, 78))),
       'true': ('Agriculture, Forestry & Fisheries',
                  'Mining',
                  'Construction')}

pd_replace = pd.DataFrame(job).explode('code')
df1.replace(dict(zip(pd_replace['code'], pd_replace['true'])))

                                Job1
0  Agriculture, Forestry & Fisheries
1                             Mining
2                       Construction