GCP 数据流 Apache Beam 代码逻辑未按预期工作

GCP Dataflow Apache Beam code logic not working as expected

我正在尝试在 Apache Beam 中实施 CDC,部署在 Google Cloud Dataflow 中。

我已经卸载了主数据和新数据,预计每天都会有。 联接未按预期工作。缺了点什么。

master_data = (
    p | 'Read base from BigQuery ' >> beam.io.Read(beam.io.BigQuerySource(query=master_data, use_standard_sql=True))
      | 'Map id in master' >> beam.Map(lambda master: (
          master['id'], master)))
new_data = (
    p | 'Read Delta from BigQuery ' >> beam.io.Read(beam.io.BigQuerySource(query=new_data, use_standard_sql=True))
      | 'Map id in new' >> beam.Map(lambda new: (new['id'], new)))

joined_dicts = (
    {'master_data' :master_data, 'new_data' : new_data }
    | beam.CoGroupByKey()
    | beam.FlatMap(join_lists)
    | 'mergeddicts' >> beam.Map(lambda masterdict, newdict: newdict.update(masterdict))
) 

def join_lists(k,v):
    itertools.product(v['master_data'], v['new_data'])

观察(样本数据):

来自主控的数据

1, 'A',3232

2, 'B',234

新数据:

1,'A' ,44

4,'D',45

master中的预期结果table,post代码实现:

1, 'A',44

2, 'B',234

4,'D',45

然而,我在 master table 中得到的是:

1,'A' ,44

4,'D',45

我是不是漏掉了一步?谁能帮我改正错误。

您不需要在分组依据后展平,因为它会再次分隔元素。

这里是示例代码。

from apache_beam.options.pipeline_options import PipelineOptions
import apache_beam as beam  

def join_lists(e):
    (k,v)=e
    return (k, v['new_data']) if v['new_data'] != v['master_data'] else (k, None)

with beam.Pipeline(options=PipelineOptions()) as p:
    master_data = (
        p | 'Read base from BigQuery ' >> beam.Create([('A', [3232]),('B', [234])])
    )
    new_data = (
        p | 'Read Delta from BigQuery ' >> beam.Create([('A',[44]),('D',[45])])
    )

    joined_dicts = (
        {'master_data' :master_data, 'new_data' : new_data }
        | beam.CoGroupByKey()
        | 'mergeddicts' >> beam.Map(join_lists)
    )
    result = p.run()
    result.wait_until_finish()
print("Pipeline finished.")