如何使用新维度重塑 xarray 数据

How to reshape xarray data with new dimensions

我是 xarray 库的新手,我被困在一个看起来相当简单的任务中。我在 GRIB 文件中有不同 30 公里网格的全球气候数据。数据如下所示:

<xarray.Dataset>
Dimensions:     (time: 736, values: 542080)
Coordinates:
    number      int64 0
  * time        (time) datetime64[ns] 2007-12-01 ... 2008-03-01T21:00:00
    step        timedelta64[ns] 00:00:00
    surface     int64 0
    latitude    (values) float64 89.78 89.78 89.78 ... -89.78 -89.78 -89.78
    longitude   (values) float64 0.0 20.0 40.0 60.0 ... 280.0 300.0 320.0 340.0
    valid_time  (time) datetime64[ns] 2007-12-01 ... 2008-03-01T21:00:00
Dimensions without coordinates: values
Data variables:
    t2m         (time, values) float32 247.30748 247.49889 ... 225.18036
Attributes:
    GRIB_edition:            1
    GRIB_centre:             ecmf
    GRIB_centreDescription:  European Centre for Medium-Range Weather Forecasts
    GRIB_subCentre:          0
    Conventions:             CF-1.7
    institution:             European Centre for Medium-Range Weather Forecasts
    history:                 2020-01-21T09:40:59 GRIB to CDM+CF via cfgrib-0....

这很好。我可以访问不同的时间实例并绘制内容,甚至可以使用 data.t2m.data 访问每个单元格的数据。但是,数据仅由 timevalue 索引,最后一个是 - 我假设 - 一个单元格编号标识符,但没有读取 latitudelongitude 有意义方面。

在文档中,作者以airtemp再分析数据为例,这些数据由latlontime索引,即我想用我的数据集做什么。

<xarray.Dataset>
Dimensions:  (lat: 25, lon: 53, time: 2920)
Coordinates:
  * lat      (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0
  * lon      (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0
  * time     (time) datetime64[ns] 2013-01-01 ... 2014-12-31T18:00:00
Data variables:
    air      (time, lat, lon) float32 ...
Attributes:
    Conventions:  COARDS
    title:        4x daily NMC reanalysis (1948)
    description:  Data is from NMC initialized reanalysis\n(4x/day).  These a...
    platform:     Model
    references:   http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly...

xarray 环境中有一种直接的重新索引方法吗?我想我可以简单地提取 numpy 数组并跳转到 pandas 或其他东西,但我发现 xarray 库非常强大和有用。

一种方法可能是从纬度和经度变量手动构造一个 pandas.MultiIndex,将其指定为 values 维度的坐标,然后拆分数据集:

import pandas as pd

index = pd.MultiIndex.from_arrays(
    [ds.longitude.values, ds.latitude.values], names=['lon', 'lat']
)
ds['values'] = index
reshaped = ds.unstack('values')

有关这方面的更多信息,请参阅 xarray 文档 "Reshaping and reorganizing data" 部分下的 this section