RcppRoll 或 CumSum 滞后于动态 window

RcppRoll or CumSum to lag with dynamic window

对于以下问题,必须有一个简单的、可能的递归解决方案。如果有人可以提供帮助,我将不胜感激:

我使用 data.table 和 RcppRoll 来计算每个产品在过去 26 周内合格周内的每周销售额。对于 26 的 window,只要当前周的#> 26,这就可以正常工作。但是,当当前周的#<= 26 时,我想使用大小为 26 的 window, 25、……等等。

公式为:基线销售额 = 26 周(或更少)的销售额总和(本周之前,仅限合格周数)除以合格周数

下面是一些创建测试数据的代码:

library("data.table")
library("RcppRoll")

products <- seq(1:10) #grouping variable
weeks <- seq(1:100) #weeks
sales <- round(rchisq(1000, 2),0) #sales
countweek <- round(runif(1000, 0,1),0) #1, if qualified weeks

data <- as.data.table(cbind(merge(weeks,products,all=T),sales,countweek))
names(data) <- c("week","product","sales","countweek")
data <- data[order(product,week)]

data[,pastsales:=shift(RcppRoll::roll_sumr(sales*countweek,26L,fill=0),1L,0,"lag"),by=.(product)]
data[,rollweekcount:=shift(RcppRoll::roll_sumr(countweek,26L,fill=0),1L,0,"lag"),by=.(product)]
data[,baseline:=pastsales/rollweekcount]

您可以看到产品 1 在第 26 周行的中断。在第 26 行之后,我得到了想要的结果:

> data[product == 1]
     week product sales countweek pastsales rollweekcount baseline
...
 20:   20       1     1         0         0             0      NaN
 21:   21       1     2         0         0             0      NaN
 22:   22       1     1         1         0             0      NaN
 23:   23       1     0         0         0             0      NaN
 24:   24       1     3         1         0             0      NaN
 25:   25       1     5         1         0             0      NaN
 26:   26       1     5         1         0             0      NaN
 27:   27       1     1         1        44            13 3.384615
 28:   28       1     0         1        45            14 3.214286
 29:   29       1     5         0        44            14 3.142857
 30:   30       1     0         1        44            14 3.142857
 31:   31       1     3         1        44            14 3.142857
 32:   32       1     4         0        42            14 3.000000
...

您需要 "adaptive" window 宽度。不确定 RcppRoll,但 data.table 的较新版本有 frollsum 可以做到这一点

data[, pastsales := shift(frollsum(sales*countweek, pmin(1:.N, 26L), adaptive = TRUE),
                          1L, 0, "lag"),
     by = .(product)]

data[, rollweekcount := shift(frollsum(countweek,  pmin(1:.N,  26L), adaptive = TRUE), 
                              1L, 0, "lag"), 
     by = .(product)]