axis ticks dateformatter 在折线图上工作不正常?

axis ticks dateformatter is not working correctly on line chart?

我可以使用绘图数据绘制折线图,​​但 x 轴标记显示不正确。因为我的数据框有 period datetimeindex 对象,我想沿 x 轴正确显示它们。我尝试了几个关于 axis ticker 的现有帖子,但我仍然没有正确的情节。如何解决这个问题?任何的想法?谢谢

EDA数据

这里是 plotting data on gist

我的尝试:

这是我目前的尝试:

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

df = pd.read_csv('plot_data.csv', encoding='utf-8')
df.div(df.Total, axis=0).applymap(lambda x: f'{x * 100:.2f}%')
fig, ax1 = plt.subplots(figsize=(14,6))
_ = df.div(df.Total, axis=0).iloc[:, :-1].plot(kind='line', ax=ax1, ax=ax1, marker='o',ls='--')
ax1.yaxis.set_major_formatter(FuncFormatter(lambda y, _: '{:.0%}'.format(y))) 
ax1.xaxis.set_major_locator(mdates.DayLocator())
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%m-%d-%Y'))
plt.show()

目标

我想渲染一个折线图,其中 y 轴应显示百分比,而 x 轴应正确显示年份中的周期。在我的代码中,x 轴代码显示不正确。有什么想法吗?

quarter列被转换为datetime格式,然后设置为索引:

import matplotlib.dates as mdates

df = pd.read_csv('plot_data.csv', encoding='utf-8')
df['quarter'] = pd.to_datetime(df['quarter'], format='%Y-%m-%d')
df = df.set_index(df['quarter'])
df = df.sort_index()
fig, ax1 = plt.subplots(figsize=(14,6))
_ = df.drop('quarter', axis=1).div(df.Total, axis=0).iloc[:, :-1].plot(kind='line', ax=ax1)
ax1.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: '{:.0%}'.format(y))) 
ax1.set_xticks(df.index)
ax1.xaxis_date()
plt.show()

在与 matplotlib 斗争之后,我找到了使用 seaborn 的解决方案。

import matplotlib.ticker as mtick
import seaborn as sns
sns.set()
df = pd.read_csv('plot_data.csv', encoding='utf-8')
df['quarter'] = pd.to_datetime(df['quarter'], format='%Y-%m-%d')
df = df.set_index(df['quarter'])
df = df.sort_index()
df_clean = df.drop('quarter', axis=1).div(df.Total, axis=0)
df_clean.drop('Total', axis=1, inplace=True)
df_us = df_clean.unstack().reset_index().copy()
df_us = df_us.rename(columns={'level_0':'Country', 0:'Percent'})
g = sns.lineplot(data=df_us, x='quarter', y='Percent', hue='Country')
g.set(xticks=df.index)
plt.xticks(rotation=30)
g.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: '{:.0%}'.format(y)))
plt.savefig('sns.png')
plt.show()

最简单的方法是让 pandas 做它的事情。要在 x 轴上显示日期,pandas 喜欢将这些日期作为索引。就做 df.set_index('quarter', inplace=True).

使用这样的索引,pandas 将设置一个看起来像日期的 x 轴,但实际上是一个分类轴(编号为 0,1,2,3,...),其中 pandas 提供刻度标签。

要设置百分比,请使用 PercentFormatter,使用参数设置 100%(为 1,而不是默认的 100)和小数位数。

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.ticker as mtick

filename = 'plot_data.csv'
df = pd.read_csv(filename, encoding='utf-8')
df.set_index('quarter', inplace=True)
fig, ax1 = plt.subplots(figsize=(14, 6))
df.div(df.Total, axis=0).iloc[:, :-1].plot(kind='line', ax=ax1, marker='o', ls='--')
ax1.yaxis.set_major_formatter(mtick.PercentFormatter(xmax=1, decimals=0))
plt.xticks(range(len(df.index)), df.index, rotation=90)
plt.show()

或者,您可以将索引转换为 matplotlib 日期并使用 matplotlib 的格式和定位器:

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.ticker as mtick

filename = 'plot_data.csv'
df = pd.read_csv(filename, encoding='utf-8')
df.quarter = [pd.to_datetime(d).date() for d in df.quarter]
df.set_index('quarter', inplace=True)
fig, ax1 = plt.subplots(figsize=(14, 6))
_ = df.div(df.Total, axis=0).iloc[:, :-1].plot(kind='line', ax=ax1, marker='o', ls='--')
ax1.yaxis.set_major_formatter(mtick.PercentFormatter(xmax=1, decimals=0))
ax1.xaxis.set_major_locator(mdates.MonthLocator(bymonthday=1, interval=3))
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%m-%d-%Y'))
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()