根据多个过滤条件创建时间戳列(R,dplyr)
Create timestamp columns based on multiple filtering conditions (R, dplyr)
我有一个数据集,df
Read Box ID Time Subject
T out 10/1/2019 9:00:01 AM
T out 10/1/2019 9:00:02 AM Re:
T out 10/1/2019 9:00:03 AM Re:
T out 10/1/2019 9:02:59 AM Re:
T out 10/1/2019 9:03:00 AM
F 10/1/2019 9:05:00 AM
T out 10/1/2019 9:06:00 AM Fwd:
T out 10/1/2019 9:06:02 AM Fwd:
T in 10/1/2019 9:07:00 AM
T in 10/1/2019 9:07:02 AM
T out 10/1/2019 9:07:04 AM
T out 10/1/2019 9:07:05 AM Fw:
T out 10/1/2019 9:07:06 AM Fw:
hello 10/1/2019 9:07:08 AM
根据此数据集中的某些条件,我想创建一个开始时间列和一个结束时间列。
我想在发生以下情况时创建一个 'starttime':如果主题列的第一个单词以 RE:、re、FWD 或 FW 开头(以连续的方式),Read == "T"、框 == "out" 和 ID == ""
第一次出现这种情况时,将生成开始时间。例如,对于此数据集,开始时间将为 10/1/2019 9:00:02 AM,因为这是我们首先看到所需条件发生的地方(主题是 FW:、RE: 或 FWD,Read = T,Box =出和 ID = "" )
然而,当这些条件中的任何一个不成立时,就会创建一个结束时间。所以第一个结束时间将发生在第 4 行之前,时间是 10/1/2019 9:02:59 AM。我的最终目标是为此创建一个持续时间列。
这是包含 RE、Fwd 和 Fw 时我想要的输出
starttime endtime duration
10/1/2019 9:00:02 AM 10/1/2019 9:02:59 AM 177 secs
10/1/2019 9:06:00 AM 10/1/2019 9:06:02 AM 2 secs
10/1/2019 9:07:05 AM 10/1/2019 9:07:06 AM 1 secs
此外,我将如何在单独的代码中指定为这些条件创建开始和结束时间:
Read = T, Box = out, ID = "" 当主题栏中的第一个单词不包含 Re、Fwd 或 Fw 时?
Read Box ID Time Subject
T out 10/1/2019 9:00:01 AM
T out 10/1/2019 9:00:02 AM Re:
T out 10/1/2019 9:00:03 AM Re:
T out 10/1/2019 9:02:59 AM Re:
T out 10/1/2019 9:03:00 AM
F 10/1/2019 9:05:00 AM
T out 10/1/2019 9:06:00 AM Fwd:
T out 10/1/2019 9:06:02 AM Fwd:
T in 10/1/2019 9:07:00 AM
T in 10/1/2019 9:07:02 AM
T out 10/1/2019 9:07:04 AM
T out 10/1/2019 9:07:05 AM Fw:
T out 10/1/2019 9:07:06 AM Fw:
hello 10/1/2019 9:07:08 AM
这是排除 RE、Fwd 和 Fw 后我想要的输出
starttime endtime duration
10/1/2019 9:00:01 AM 10/1/2019 9:00:01 AM 0 secs
10/1/2019 9:03:00 AM 10/1/2019 9:03:00 AM 0 secs
10/1/2019 9:07:04 AM 10/1/2019 9:07:04 AM 0 secs
输出:
structure(list(Read = structure(c(3L, 3L, 3L, 3L, 3L, 2L, 3L,
3L, 3L, 3L, 4L, 4L, 3L, 1L), .Label = c("", "F", "T", "T "), class = "factor"),
Box = structure(c(3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 2L, 2L,
3L, 3L, 3L, 1L), .Label = c("", "in", "out"), class = "factor"),
ID = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L), .Label = c("", "hello"), class = "factor"),
Time = structure(1:14, .Label = c("10/1/2019 9:00:01 AM",
"10/1/2019 9:00:02 AM", "10/1/2019 9:00:03 AM", "10/1/2019 9:02:59 AM",
"10/1/2019 9:03:00 AM", "10/1/2019 9:05:00 AM", "10/1/2019 9:06:00 AM",
"10/1/2019 9:06:02 AM", "10/1/2019 9:07:00 AM", "10/1/2019 9:07:02 AM",
"10/1/2019 9:07:04 AM", "10/1/2019 9:07:05 AM", "10/1/2019 9:07:06 AM",
"10/1/2019 9:07:08 AM"), class = "factor"), Subject = structure(c(1L,
4L, 4L, 4L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 1L), .Label = c("",
"Fw:", "Fwd:", "Re:"), class = "factor")), class = "data.frame", row.names = c(NA,
-14L))
建议的代码有效,我也想合并主题列条件:
其中 Subject == FW, FWD, RE(忽略 upper/lowercase)
和
其中Subject不等于FW,FWD,Re(忽略upper/lowercase)
library(dplyr)
df %>%
mutate(Time = lubridate::mdy_hms(Time),
cond = Read == "T" & Box == "out" & ID == "" & Subject == "FW" & Subject == "FWD" & Subject == "RE" (ignore.case = TRUE)
grp = cumsum(!cond)) %>%
filter(cond) %>%
group_by(grp) %>%
summarise(starttime = first(Time),
endtime = last(Time),
duration = difftime(endtime, starttime, units = "secs")) %>%
select(-grp)
图书馆(dplyr)
df %>%
mutate(Time = lubridate::mdy_hms(Time),
cond = Read == "T" & Box == "out" & ID == "" & Subject! == "FW" & Subject! == "FWD" & Subject! == "RE" (ignore.case = TRUE)
grp = cumsum(!cond)) %>%
filter(cond) %>%
group_by(grp) %>%
summarise(starttime = first(Time),
endtime = last(Time),
duration = difftime(endtime, starttime, units = "secs")) %>%
select(-grp)
您的问题的整个部分已在您的其他问题 () 中得到解答。我知道这可能很困难,但下次请尝试通过关注您还不知道的内容来将您的问题减少到一个较小的问题。
如果要检测子字符串,最好的方法是使用 stringr
包中的 str_detect
(tidyverse
的一部分):
library(tidyverse)
library(lubridate)
df %>%
mutate(Time = mdy_hms(Time),
# cond = Read == "T" & Box == "out" & ID == "", #from the answer
cond = Read == "T" & Box == "out" & ID == "" & str_detect(Subject, regex('FW|FWD|RE', ignore_case=TRUE)), #including those subjects
# cond = Read == "T" & Box == "out" & ID == "" & !str_detect(Subject, regex('FW|FWD|RE', ignore_case=TRUE)), #excluding those subjects
grp = cumsum(!cond)) %>%
filter(cond) %>%
group_by(grp) %>%
summarise(starttime = first(Time),
endtime = last(Time),
duration = difftime(endtime, starttime, units = "secs")) %>%
select(-grp)
这个用到了正则表达式(regex
),这是一个很好学的东西。这个非常容易阅读,因为它只有 OR (|
) 运算符,但可能性是无限的。
我有一个数据集,df
Read Box ID Time Subject
T out 10/1/2019 9:00:01 AM
T out 10/1/2019 9:00:02 AM Re:
T out 10/1/2019 9:00:03 AM Re:
T out 10/1/2019 9:02:59 AM Re:
T out 10/1/2019 9:03:00 AM
F 10/1/2019 9:05:00 AM
T out 10/1/2019 9:06:00 AM Fwd:
T out 10/1/2019 9:06:02 AM Fwd:
T in 10/1/2019 9:07:00 AM
T in 10/1/2019 9:07:02 AM
T out 10/1/2019 9:07:04 AM
T out 10/1/2019 9:07:05 AM Fw:
T out 10/1/2019 9:07:06 AM Fw:
hello 10/1/2019 9:07:08 AM
根据此数据集中的某些条件,我想创建一个开始时间列和一个结束时间列。
我想在发生以下情况时创建一个 'starttime':如果主题列的第一个单词以 RE:、re、FWD 或 FW 开头(以连续的方式),Read == "T"、框 == "out" 和 ID == ""
第一次出现这种情况时,将生成开始时间。例如,对于此数据集,开始时间将为 10/1/2019 9:00:02 AM,因为这是我们首先看到所需条件发生的地方(主题是 FW:、RE: 或 FWD,Read = T,Box =出和 ID = "" ) 然而,当这些条件中的任何一个不成立时,就会创建一个结束时间。所以第一个结束时间将发生在第 4 行之前,时间是 10/1/2019 9:02:59 AM。我的最终目标是为此创建一个持续时间列。
这是包含 RE、Fwd 和 Fw 时我想要的输出
starttime endtime duration
10/1/2019 9:00:02 AM 10/1/2019 9:02:59 AM 177 secs
10/1/2019 9:06:00 AM 10/1/2019 9:06:02 AM 2 secs
10/1/2019 9:07:05 AM 10/1/2019 9:07:06 AM 1 secs
此外,我将如何在单独的代码中指定为这些条件创建开始和结束时间: Read = T, Box = out, ID = "" 当主题栏中的第一个单词不包含 Re、Fwd 或 Fw 时?
Read Box ID Time Subject
T out 10/1/2019 9:00:01 AM
T out 10/1/2019 9:00:02 AM Re:
T out 10/1/2019 9:00:03 AM Re:
T out 10/1/2019 9:02:59 AM Re:
T out 10/1/2019 9:03:00 AM
F 10/1/2019 9:05:00 AM
T out 10/1/2019 9:06:00 AM Fwd:
T out 10/1/2019 9:06:02 AM Fwd:
T in 10/1/2019 9:07:00 AM
T in 10/1/2019 9:07:02 AM
T out 10/1/2019 9:07:04 AM
T out 10/1/2019 9:07:05 AM Fw:
T out 10/1/2019 9:07:06 AM Fw:
hello 10/1/2019 9:07:08 AM
这是排除 RE、Fwd 和 Fw 后我想要的输出
starttime endtime duration
10/1/2019 9:00:01 AM 10/1/2019 9:00:01 AM 0 secs
10/1/2019 9:03:00 AM 10/1/2019 9:03:00 AM 0 secs
10/1/2019 9:07:04 AM 10/1/2019 9:07:04 AM 0 secs
输出:
structure(list(Read = structure(c(3L, 3L, 3L, 3L, 3L, 2L, 3L,
3L, 3L, 3L, 4L, 4L, 3L, 1L), .Label = c("", "F", "T", "T "), class = "factor"),
Box = structure(c(3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 2L, 2L,
3L, 3L, 3L, 1L), .Label = c("", "in", "out"), class = "factor"),
ID = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L), .Label = c("", "hello"), class = "factor"),
Time = structure(1:14, .Label = c("10/1/2019 9:00:01 AM",
"10/1/2019 9:00:02 AM", "10/1/2019 9:00:03 AM", "10/1/2019 9:02:59 AM",
"10/1/2019 9:03:00 AM", "10/1/2019 9:05:00 AM", "10/1/2019 9:06:00 AM",
"10/1/2019 9:06:02 AM", "10/1/2019 9:07:00 AM", "10/1/2019 9:07:02 AM",
"10/1/2019 9:07:04 AM", "10/1/2019 9:07:05 AM", "10/1/2019 9:07:06 AM",
"10/1/2019 9:07:08 AM"), class = "factor"), Subject = structure(c(1L,
4L, 4L, 4L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 1L), .Label = c("",
"Fw:", "Fwd:", "Re:"), class = "factor")), class = "data.frame", row.names = c(NA,
-14L))
建议的代码有效,我也想合并主题列条件:
其中 Subject == FW, FWD, RE(忽略 upper/lowercase)
和
其中Subject不等于FW,FWD,Re(忽略upper/lowercase)
library(dplyr)
df %>%
mutate(Time = lubridate::mdy_hms(Time),
cond = Read == "T" & Box == "out" & ID == "" & Subject == "FW" & Subject == "FWD" & Subject == "RE" (ignore.case = TRUE)
grp = cumsum(!cond)) %>%
filter(cond) %>%
group_by(grp) %>%
summarise(starttime = first(Time),
endtime = last(Time),
duration = difftime(endtime, starttime, units = "secs")) %>%
select(-grp)
图书馆(dplyr)
df %>%
mutate(Time = lubridate::mdy_hms(Time),
cond = Read == "T" & Box == "out" & ID == "" & Subject! == "FW" & Subject! == "FWD" & Subject! == "RE" (ignore.case = TRUE)
grp = cumsum(!cond)) %>%
filter(cond) %>%
group_by(grp) %>%
summarise(starttime = first(Time),
endtime = last(Time),
duration = difftime(endtime, starttime, units = "secs")) %>%
select(-grp)
您的问题的整个部分已在您的其他问题 (
如果要检测子字符串,最好的方法是使用 stringr
包中的 str_detect
(tidyverse
的一部分):
library(tidyverse)
library(lubridate)
df %>%
mutate(Time = mdy_hms(Time),
# cond = Read == "T" & Box == "out" & ID == "", #from the answer
cond = Read == "T" & Box == "out" & ID == "" & str_detect(Subject, regex('FW|FWD|RE', ignore_case=TRUE)), #including those subjects
# cond = Read == "T" & Box == "out" & ID == "" & !str_detect(Subject, regex('FW|FWD|RE', ignore_case=TRUE)), #excluding those subjects
grp = cumsum(!cond)) %>%
filter(cond) %>%
group_by(grp) %>%
summarise(starttime = first(Time),
endtime = last(Time),
duration = difftime(endtime, starttime, units = "secs")) %>%
select(-grp)
这个用到了正则表达式(regex
),这是一个很好学的东西。这个非常容易阅读,因为它只有 OR (|
) 运算符,但可能性是无限的。