处理分类中罕见因素水平的一般策略?

General strategy for dealing with rare factor levels in classification?

假设我有这样的数据集:

  breakfast    lunch     dinner    mood  
 ----------- ---------- --------- ------ 
  waffles     sandwich   chili     good  
  sausages    sandwich   pasta     good  
  yogurt      salad      stew      bad   
  gruel       salad      pizza     bad   
  gruel       pizza      pizza     good  
  sausages    pizza      pasta     good  
  waffles     salad      chili     good  
  gruel       soup       pizza     bad   
  waffles     soup       chili     good  
  sausages    salad      pasta     good  
  waffles     pizza      chili     good  
  yogurt      sandwich   stew      good  
  yogurt      pizza      stew      good  
  sausages    soup       pasta     good  
  gruel       sandwich   pizza     good  
  yogurt      soup       waffles   good  

我想根据一个人那天吃的东西来预测他的心情。所以我将进行 70/30 train/test 拆分并使用随机森林、SVM 或类似的东西来构建分类器。

至少在我过去使用过它们时,如果预测器在测试集中有一个未出现在训练集中的水平,我使用过的分类器会抱怨。最后一行可能会发生这种情况,其中 dinner == "waffles".

为避免这种情况,在进行拆分之前,我通常会删除任何列中频率低于 10% 的行。

我怀疑可能有更好的方法。我主要用 R 编写代码,但如果你想 post 在 Python 中回答,我可能能够理解它。

谢谢!

现在我知道行话了,我发现这个 post 有一个 R 用例:stratified splitting the data

应用于我的示例,对晚餐和由此产生的情绪进行分层:

library(splitstackshape)
library(readr)

meals_mood_text <- "breakfast   lunch   dinner  mood
waffles sandwich    chili   good
sausages    sandwich    pasta   good
yogurt  soup    waffles good
yogurt  salad   stew    bad
gruel   salad   pizza   bad
gruel   pizza   pizza   good
sausages    pizza   pasta   good
waffles salad   chili   good
gruel   soup    pizza   bad
waffles soup    chili   good
sausages    salad   pasta   good
waffles pizza   chili   good
yogurt  sandwich    stew    good
yogurt  pizza   stew    good
sausages    soup    pasta   good
gruel   sandwich    pizza   good"

meals_mood_frame <-
  read.table(textConnection(meals_mood_text), header = TRUE)
closeAllConnections()

strat.res <- stratified(meals_mood_frame, c('dinner','mood'), 0.7, bothSets = TRUE)

print(strat.res[[1]])

print(strat.res[[2]])