Pivot - 通过重复 pandas 数据框转置列

Pivot - Transpose columns by duplicates pandas dataframe

我有一个 DataFrame,其中包含一个名为 'ID' 的列,该列具有重复的观察值。每个 'ID' 行都有一个或多个 'Article' 值列。我想通过 'ID' 在唯一 'ID' 的同一行添加新列来转置整个数据帧分组。

我有:

ID  Article_1   Article_2
1   Banana      Coconut
2   Apple       Strawberry
1   Apple   
3   Tomatoe 
1   Pineapple   
2   Banana  
4   Apple   
5   Apple       Strawberry
3   Apple   

我想要的:

ID     Article_1    Article_2   Article_3   Article_4
0001    Banana      Coconut     Apple       Pineapple
0002    Apple       Strawberry  Banana      NaN
0003    Tomatoe     Apple       NaN         NaN
0004    Apple       NaN         NaN         NaN
0005    Apple       Strawberry  NaN         NaN

新编辑:

我遇到过一些顺序很重要的情况。

我的东风:

ID  Article     Article_2
1   Banana      NaN
2   Apple       NaN
1   Apple       Coconut
3   Tomatoe     Coconut
1   Pineapple   Tropical
2   Banana      Coconut
4   Apple       Coconut
5   Apple       Coconut
3   Apple       Pineapple

第一个@Erfan 解决方案的输出:

        Article_1   Article_2   Article_3   Article_4   Article_5   Article_6
0001    Banana      Apple       Pineapple   NaN         Coconut     Tropical
0002    Apple       Banana      NaN         Coconut     NaN         NaN
0003    Tomatoe     Apple       Coconut     Pineapple   NaN         NaN
0004    Apple       Coconut     NaN         NaN         NaN         NaN
0005    Apple       Coconut     NaN         NaN         NaN         NaN

我需要什么:

        Article_1   Article_2   Article_3   Article_4   Article_5   Article_6
0001    Banana      Apple       Pineapple   Coconut     Tropical    NaN     
0002    Apple       Banana      Coconut     NaN         NaN         NaN
0003    Tomatoe     Apple       Coconut     Pineapple   NaN         NaN
0004    Apple       Coconut     NaN         NaN         NaN         NaN
0005    Apple       Coconut     NaN         NaN         NaN         NaN

我不能让 Article_5 具有 NaN 值,而 Article_6 具有同一行的值。

如果文章的顺序不重要,我们可以使用 DataFrame.melt 将您的文章反透视到行。

然后我们用DataFrame.pivot_table聚合到每个ID。虽然我们使用 GroupBy.cumcountID 中的每个 article 提供唯一标识符:

dfn = df.melt(id_vars='ID', value_vars=['Article_1', 'Article_2'])
dfn = dfn.pivot_table(index='ID', 
                      columns=dfn.groupby('ID')['value'].cumcount().add(1),
                      values='value',
                      aggfunc='first').add_prefix('Article_').rename_axis(None, axis='index')

     Article_1   Article_2   Article_3 Article_4
0001    Banana       Apple   Pineapple   Coconut
0002     Apple      Banana  Strawberry       NaN
0003   Tomatoe       Apple         NaN       NaN
0004     Apple         NaN         NaN       NaN
0005     Apple  Strawberry         NaN       NaN