如何创建列的频率,然后在 R 中对该数据执行聚合

How to create the frequency of a column and then perform an aggregation on that data in R

Objective:

我有一个数据集 df,我希望首先计算每个日期的出现次数,然后将输出乘以某个数字。

Sent                      Duration   Length

1/7/2020  8:11:00 PM       34         216
1/22/2020 7:51:05 AM      432         111
1/7/2020  1:35:08 AM       57          90
1/22/2020 3:43:26 AM       22         212
1/22/2020 4:00:00 AM       55         500

期望的结果:

Date                     Count          Aggregation(80)
1/7/2020                 2              160
1/22/2020                3              240

我想计算特定 'datetime' 出现的次数,然后将此结果乘以 80。日期 1/7/2020 出现两次,日期 1/22/2020,出现三次。然后我将这个数字乘以数字 80。

输出为:

structure(list(Sent = structure(c(5L, 3L, 4L, 1L, 2L), .Label = c("1/22/2020 3:43:26 AM", 
"1/22/2020 4:00:00 AM", "1/22/2020 7:51:05 PM", "1/7/2020 1:35:08 AM", 
"1/7/2020 8:11:00 PM"), class = "factor"), Duration = c(34L, 
432L, 57L, 22L, 55L), length = c(216L, 111L, 90L, 212L, 500L)), class = "data.frame", row.names = c(NA, 
-5L))

这是我试过的:

df1<- aggregate(df$Sent, by=list(Category= df$dSent), 
    FUN=length)

但是,我需要输出日期出现的频率以及聚合(乘以 80)

欢迎提出任何建议。

这是data.table事情的方式..

代码

library( data.table )
#set data as data.table
setDT(mydata)
#set timestamps as posix
mydata[, Sent := as.POSIXct( Sent, format = "%m/%d/%Y %H:%M:%S %p" ) ]
#summarise
mydata[, .(Count = .N, Aggregation = .N * 80), by = .(Date = as.Date(Sent) )]

输出

#          Date Count Aggregation
# 1: 2020-01-07     2         160
# 2: 2020-01-22     3         240

我们可以将Sent格式转换为POSIXct格式并提取日期,统计每个日期的行数并乘以80。使用dplyr,我们可以做到如:

library(dplyr)

df %>%
 group_by(Date = as.Date(lubridate::mdy_hms(Sent))) %>%
 summarise(Count = n(), `Aggregation(80)` = Count * 80)

#  Date       Count `Aggregation(80)`
#  <date>     <int>             <dbl>
#1 2020-01-07     2               160
#2 2020-01-22     3               240

使用 table.

as.data.frame(cbind(Count=(r <- table(as.Date(df$Sent, format="%m/%d/%Y %H:%M:%S"))), 
      Agg=r*80))
#            Count Agg
# 2020-01-07     2 160
# 2020-01-22     3 240

`rownames<-`(as.data.frame(cbind(Count=(r <- table(as.Date(df$Sent, format="%m/%d/%Y %H:%M:%S"))), 
                    Agg=r*80, Date=names(r)))[c(3, 1:2)], NULL)
#         Date Count Agg
# 1 2020-01-07     2 160
# 2 2020-01-22     3 240