Python--读取dat文件行,重写到Excel中的列。 csv/numpy/openpyxl

Python--Read dat file rows, rewrite to columns in Excel. csv/numpy/openpyxl

我 运行 在使用 csv/numpy/openpyxl 时遇到了一些问题,问题是 我有一个 .dat 文件,在

a,a,a,a
b,b,b,b
c,c,c,c

我想获取 dat 文件的每一行,将其放入每个 excel 的一列中,意思是

excel 文件:

a b c
a b c
a b c

这是我到目前为止得到的结果:

import csv
import openpyxl
import numpy as np


wb = openpyxl.Workbook()
ws = wb.active

with open('Shari10.dat') as f:
    dat_reader = csv.reader(f, delimiter = ",")

    for header in csv.reader(f):
        break

    for dat_line in f:
        line = dat_line.split(",")

        data = np.vstack(line[1:8])

        for row in data:
            ws.append(row)
            print(row)
        #wb.save("coffee.xlsx")

这里是错误:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-17-a07e6ac6842f> in <module>
     20         print(data)
     21         for row in data:
---> 22             ws.append(row)
     23         #wb.save("coffee.xlsx")

~\AppData\Local\Continuum\anaconda3\lib\site-packages\openpyxl\worksheet\worksheet.py in append(self, iterable)
    665 
    666         else:
--> 667             self._invalid_row(iterable)
    668 
    669         self._current_row = row_idx

~\AppData\Local\Continuum\anaconda3\lib\site-packages\openpyxl\worksheet\worksheet.py in _invalid_row(self, iterable)
    792     def _invalid_row(self, iterable):
    793         raise TypeError('Value must be a list, tuple, range or generator, or a dict. Supplied value is {0}'.format(
--> 794             type(iterable))
    795                         )
    796 

TypeError: Value must be a list, tuple, range or generator, or a dict. Supplied value is <class 'str'>

作为参考,我正在尝试这样做:

data = [
         ['A', 100, 1.0],
         ['B', 200, 2.0],
         ['C', 300, 3.0],    
         ['D', 400, 4.0],        
 ]
for row in data:
    ws.append(row)

同时,我刚开始学习python,所以请原谅我乱七八糟的代码结构,至于语法,我尽量写得准确而不是缩短代码。

您似乎遇到了 numpy 数组不是列表的问题。您可以使用 numpy 的 tolist() 方法通过更改此

来解决此问题
for row in data:
    ws.append(row)
    print(row)

至此

for row in data:
    ws.append(row.tolist())
    print(row.tolist())

只需更改这些行即可使代码 运行 成功,但它不会提供您想要的输出。 运行 输入文件的代码

a,a,a,a
b,b,b,b
c,c,c,c

生成如下所示的电子表格,因为您要将每个行数组转置为列数组,然后将各列堆叠在一起(ws.append 将行添加到工作表底部)

b
b
b
b\n
c
c
c
c\n

如果您想要转置整个 csv(包括 header),一个简单的方法是使用 numpy 的 transpose 方法。此方法将为您交换整个数组,然后您可以遍历每一行以将每一行写入工作表。这将简化您在 csv 文件中的读取方式,如下所示。请记住 transpose 仅适用于方形数组,因此我添加了一些代码来对任何锯齿状数组进行平方。

import openpyxl
import numpy as np

# Create 
wb = openpyxl.Workbook()
ws = wb.active

with open('input.dat') as f:
    # Read in all the data
    data = list(csv.reader(f))

    ## If your CSV isn't square, you need to square it first
    # Get longest row in array
    longest = len(max(data, key=len))
    # Pad every row to longest row length
    for row in data:
        row.extend( (longest - len(row))*[''])

    ## Once data is square, continue as normal
    # Transpose the array
    data = np.transpose(data)

    # Write all rows to worksheet
    for row in data:
        ws.append(row.tolist())

# Save worksheet
wb.save('test.xlsx')

假设我们有一个文件 example.dat,其中包含以下内容:

a1,a2,a3,a4
b1,b2,b3,b4
c1,c2,c3,c4

最好使用 pandas. First load the data as a dataframe, then take the transpose and save the resulting dataframe in an excel 文件,如下所示:

import pandas as pd

df_in = pd.read_csv("example.dat", header = None) # header = False since the data has no header.

data_out = df_in.transpose()

data_out.to_excel("example.xlsx", index = False, header = False) # index and header False since you don't want row or column indices written to the excel file.

输出:

a1  b1  c1
a2  b2  c2
a3  b3  c3
a4  b4  c4

优点:简单干净。 缺点: 此实现需要 openpyxl

安装为:pip install openpyxl