如何创建具有多个颜色图的热图?
How to create a heat-map with multiple colormaps?
如下图所示,我正在寻找一种将两个或多个热图合并为一个的简单方法,即具有多个颜色图的热图。
想法是将每个单元格分成多个子单元格。我找不到任何已经实现了这种可视化功能的 python 库。有人(至少)知道与此接近的东西吗?
您可以重组数组以在实际数据之间留出空列,然后创建一个屏蔽数组来绘制具有透明度的热图。这是添加空列的一种方法(可能不是最好的方法):
arr1 = np.arange(20).reshape(4, 5)
arr2 = np.arange(20, 0, -1).reshape(4, 5)
filler = np.nan * np.zeros((4, 5))
c1 = np.vstack([arr1, filler]).T.reshape(10, 4).T
c2 = np.vstack([filler, arr2]).T.reshape(10, 4).T
c1 = np.ma.masked_array(c1, np.isnan(c1))
c2 = np.ma.masked_array(c2, np.isnan(c2))
plt.pcolormesh(c1, cmap='bone')
plt.pcolormesh(c2, cmap='jet')
您还可以使用 np.repeat
并按照@JohanC 注释屏蔽每隔一列
c1 = np.ma.masked_array(np.repeat(arr1, 2, axis=1), np.tile([True, False], arr1.size))
c2 = np.ma.masked_array(np.repeat(arr2, 2, axis=1), np.tile([False, True], arr2.size))
热图可以逐列绘制。白色网格线可以标记单元格边框。
import numpy as np
from matplotlib import pyplot as plt
a = np.random.random((5, 6))
b = np.random.random((5, 6))
vmina = a.min()
vminb = b.min()
vmaxa = a.max()
vmaxb = b.max()
fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(10,3), gridspec_kw={'width_ratios':[1,1,2]})
ax1.imshow(a, cmap='Reds', interpolation='nearest', origin='lower', vmin=vmina, vmax=vmaxa)
ax1.set_xticks(np.arange(.5, a.shape[1]-1, 1), minor=True)
ax1.set_yticks(np.arange(.5, a.shape[0]-1, 1), minor=True)
ax2.imshow(b, cmap='Blues', interpolation='nearest', origin='lower', vmin=vminb, vmax=vmaxb)
ax2.set_xticks(np.arange(.5, a.shape[1]-1, 1), minor=True)
ax2.set_yticks(np.arange(.5, a.shape[0]-1, 1), minor=True)
for i in range(a.shape[1]):
ax3.imshow(a[:,i:i+1], extent=[2*i-0.5, 2*i+0.5, -0.5, a.shape[0]-0.5 ],
cmap='Reds', interpolation='nearest', origin='lower', vmin=vmina, vmax=vmaxa)
ax3.imshow(b[:,i:i+1], extent=[2*i+0.5, 2*i+1.5, -0.5, a.shape[0]-0.5 ],
cmap='Blues', interpolation='nearest', origin='lower', vmin=vminb, vmax=vmaxb)
ax3.set_xlim(-0.5, 2*a.shape[1] -0.5 )
ax3.set_xticks(np.arange(1.5, 2*a.shape[1]-1, 2), minor=True)
ax3.set_yticks(np.arange(.5, a.shape[0]-1, 1), minor=True)
for ax in (ax1, ax2, ax3):
ax.grid(color='white', which='minor', lw=2)
ax.set_xticks([])
ax.set_yticks([])
ax.tick_params(axis='both', which='both', size=0)
plt.show()
PS:如果简洁是一个重要因素,那么所有的修饰、细节和比较都可以省略:
# import numpy as np
# from matplotlib import pyplot as plt
a = np.random.random((5, 6))
b = np.random.random((5, 6))
norma = plt.Normalize(vmin=a.min(), vmax=a.max())
normb = plt.Normalize(vmin=b.min(), vmax=b.max())
for i in range(a.shape[1]):
plt.imshow(a[:, i:i + 1], extent=[2*i-0.5, 2*i+0.5, -0.5, a.shape[0]-0.5], cmap='Reds', norm=norma)
plt.imshow(b[:, i:i + 1], extent=[2*i+0.5, 2*i+1.5, -0.5, a.shape[0]-0.5], cmap='Blues', norm=normb)
plt.xlim(-0.5, 2*a.shape[1]-0.5)
# plt.show()
如下图所示,我正在寻找一种将两个或多个热图合并为一个的简单方法,即具有多个颜色图的热图。
想法是将每个单元格分成多个子单元格。我找不到任何已经实现了这种可视化功能的 python 库。有人(至少)知道与此接近的东西吗?
您可以重组数组以在实际数据之间留出空列,然后创建一个屏蔽数组来绘制具有透明度的热图。这是添加空列的一种方法(可能不是最好的方法):
arr1 = np.arange(20).reshape(4, 5)
arr2 = np.arange(20, 0, -1).reshape(4, 5)
filler = np.nan * np.zeros((4, 5))
c1 = np.vstack([arr1, filler]).T.reshape(10, 4).T
c2 = np.vstack([filler, arr2]).T.reshape(10, 4).T
c1 = np.ma.masked_array(c1, np.isnan(c1))
c2 = np.ma.masked_array(c2, np.isnan(c2))
plt.pcolormesh(c1, cmap='bone')
plt.pcolormesh(c2, cmap='jet')
您还可以使用 np.repeat
并按照@JohanC 注释屏蔽每隔一列
c1 = np.ma.masked_array(np.repeat(arr1, 2, axis=1), np.tile([True, False], arr1.size))
c2 = np.ma.masked_array(np.repeat(arr2, 2, axis=1), np.tile([False, True], arr2.size))
热图可以逐列绘制。白色网格线可以标记单元格边框。
import numpy as np
from matplotlib import pyplot as plt
a = np.random.random((5, 6))
b = np.random.random((5, 6))
vmina = a.min()
vminb = b.min()
vmaxa = a.max()
vmaxb = b.max()
fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(10,3), gridspec_kw={'width_ratios':[1,1,2]})
ax1.imshow(a, cmap='Reds', interpolation='nearest', origin='lower', vmin=vmina, vmax=vmaxa)
ax1.set_xticks(np.arange(.5, a.shape[1]-1, 1), minor=True)
ax1.set_yticks(np.arange(.5, a.shape[0]-1, 1), minor=True)
ax2.imshow(b, cmap='Blues', interpolation='nearest', origin='lower', vmin=vminb, vmax=vmaxb)
ax2.set_xticks(np.arange(.5, a.shape[1]-1, 1), minor=True)
ax2.set_yticks(np.arange(.5, a.shape[0]-1, 1), minor=True)
for i in range(a.shape[1]):
ax3.imshow(a[:,i:i+1], extent=[2*i-0.5, 2*i+0.5, -0.5, a.shape[0]-0.5 ],
cmap='Reds', interpolation='nearest', origin='lower', vmin=vmina, vmax=vmaxa)
ax3.imshow(b[:,i:i+1], extent=[2*i+0.5, 2*i+1.5, -0.5, a.shape[0]-0.5 ],
cmap='Blues', interpolation='nearest', origin='lower', vmin=vminb, vmax=vmaxb)
ax3.set_xlim(-0.5, 2*a.shape[1] -0.5 )
ax3.set_xticks(np.arange(1.5, 2*a.shape[1]-1, 2), minor=True)
ax3.set_yticks(np.arange(.5, a.shape[0]-1, 1), minor=True)
for ax in (ax1, ax2, ax3):
ax.grid(color='white', which='minor', lw=2)
ax.set_xticks([])
ax.set_yticks([])
ax.tick_params(axis='both', which='both', size=0)
plt.show()
PS:如果简洁是一个重要因素,那么所有的修饰、细节和比较都可以省略:
# import numpy as np
# from matplotlib import pyplot as plt
a = np.random.random((5, 6))
b = np.random.random((5, 6))
norma = plt.Normalize(vmin=a.min(), vmax=a.max())
normb = plt.Normalize(vmin=b.min(), vmax=b.max())
for i in range(a.shape[1]):
plt.imshow(a[:, i:i + 1], extent=[2*i-0.5, 2*i+0.5, -0.5, a.shape[0]-0.5], cmap='Reds', norm=norma)
plt.imshow(b[:, i:i + 1], extent=[2*i+0.5, 2*i+1.5, -0.5, a.shape[0]-0.5], cmap='Blues', norm=normb)
plt.xlim(-0.5, 2*a.shape[1]-0.5)
# plt.show()