同时操作KStream和KTable

Simultaneous operations on KStream & KTables

我正在尝试在 Kafka Streams 中实现一个用例,其中我根据在此流上应用一些过滤器来填充 Ktable,我们称其为 table 跟踪 table 其中键是从事件派生的,值是事件。 现在对于后续事件,我检查此 table 以验证它们是否被跟踪并更新事件(如果被跟踪)或将其发布到不同的主题。我不确定如何同时执行此操作。这是我目前所拥有的。

// Branch based on conditions
KStream<String, Event>[] segregatedRecords = branches[0]
                       .branch((key, event) -> event.getStatus().getStatus().equals("A"),
                        (key, event) -> event.getStatus().getStatus().equals("B"),
                        (key, event) -> event.getStatus().getStatus().equals("C"),


// Store events with status A to a topic
segregatedRecords[0]
                .selectKey((key, event) -> createKey(event))
                .mapValues(transform)
                .to(intermediateTopic);

// Load topic from previous step as GlobalKtable
GlobalKTable<String, Event> trackedEvents = streamsBuilder.globalTable(intermediateTopic);

// The following step is where I'm stuck, because I can not perform conditional actions
// If the event exists in the tracking table (update) but if not then how to publish it to a different topic?
segregatedRecords[1]
                 // derive key for lookup
                .selectKey((key, event) -> createKey(event))
                // update the event status in the table 
                .join(trackedEvents, (key, value) -> key,(event, tracked) -> modifiedEvent
                ).to(intermediateTopic);

// Other events will need to refer the latest information in the tracked table for further processing 


您可以通过将 segregatedRecords[1] 分支为 2 个子拓扑来执行此操作,一个分支执行 table 锁定作为您的代码,而另一个分支使用低级处理器 API(使用a transformValues in this case) 检查底层 GlobalKTable state store 是否包含新派生键的记录,如果记录存在则将 Event 转换为 null Event,然后我们过滤掉具有null Event(因为我们已经加入了您的第一个子拓扑中的那些事件)。 我稍微更新了你的代码:

//give your GlobalKTable a name to query later
GlobalKTable<String, Event> trackedEvents = streamsBuilder.globalTable(intermediateTopic, Materialized.as("tracked_event_global_store"));

KStream<String, Event> derivedKStream = segregatedRecords[1]
    // derive key for lookup
    .selectKey((key, event) -> createKey(event));
// this sub-topology perform table lockup as normal: update the event status in the table
derivedKStream.join(trackedEvents, (key, value) -> key,(event, tracked) -> modifiedEvent)
    .to(intermediateTopic);
// this sub-topology check whether the event existed in trackedEvents, if yes then event has been already joined 
// so we transform to null value and filter in next step 
derivedKStream.transformValues(() -> new ValueTransformerWithKey<String, Event, Event>() {
    //get the underlying store of Tracked GlobalKTable
    KeyValueStore<String, Event> trackedKvStore;
    @Override
    public void init(ProcessorContext context) {
        //using the previous name
        trackedKvStore = (KeyValueStore<String, Event>) context.getStateStore("tracked_event_global_store");
    }

    @Override
    public Event transform(String derivedKey, Event event) {
        //if event existed in trackedEvents then return a null event so we can filter out in next pipe
        if (trackedKvStore.get(derivedKey) != null) {
            return null;
        }
        //event not exist in trackedEvents, keep the event and send to different topic
        return event;
    }

    @Override
    public void close() {
    }
})
.filter((derivedKey, event) -> event != null)
.to("your different toic name");

Update : 关于无法从单个主题创建 GlobalKTable 和 KStream 的问题 intermediate(无法多次读取主题 as described here):

  1. GlobalKTable 创建一个专用输入主题(该主题必须启用日志压缩):
KStream<Object, Object> intermediateKStream = streamsBuilder.stream(intermediate);
intermediateKStream.to(trackedInputTopic);
//instead of building GlobalKTable from intermediate, use this dedicated topic trackedInputTopic
GlobalKTable<String, Event> trackedEvents = streamsBuilder.globalTable(trackedInputTopic, Materialized.as("tracked_event_global_store"));

//Perform things you want to do with the intermediate topic
intermediateKStream
        ...