threading 模块和 multiprocessing 模块的比较

Comparison between threading module and multiprocessing module

所以我想比较 threading 更快还是 multiprocessing。理论上,由于 GIL,多处理应该比多线程更快,因为一次只有一个线程运行。但是我得到了 相反 结果,即线程比多处理花费的时间更少,我错过了什么请帮忙。

下面是threading

的代码
import threading
from queue import Queue
import time

print_lock = threading.Lock()

def exampleJob(worker):
    time.sleep(10)  
    with print_lock:
        print(threading.current_thread().name,worker)


def threader():
    while True:

        worker = q.get()


        exampleJob(worker)


        q.task_done()

q = Queue()

for x in range(4):
     t = threading.Thread(target=threader)

     print(x)
     t.daemon = True


     t.start()

start = time.time()


for worker in range(8):
    q.put(worker)


q.join()


print('Entire job took:',time.time() - start)

下面是multiprocessing

的代码
import multiprocessing as mp
import time

def exampleJob(print_lock,worker):                 # function simulating some computation
    time.sleep(10)
    with print_lock:
        print(mp.current_process().name,worker)

def processor(print_lock,q):                       # function where process pick up the job
    while True:
        worker = q.get()
        if worker is None: # flag to exit the process
            break
        exampleJob(print_lock,worker)


if __name__ == '__main__':

    print_lock = mp.Lock()
    q = mp.Queue()
    processes = [mp.Process(target=processor,args=(print_lock,q)) for _ in range(4)]

    for process in processes:
        process.start()    

    start = time.time()
    for worker in range(8):
        q.put(worker)

    for process in processes:
        q.put(None) # quit indicator

    for process in processes:
        process.join()

    print('Entire job took:',time.time() - start)

这不是一个正确的测试。 time.sleep 可能不会获取 GIL,因此您是 运行 并发线程与并发进程。由于没有启动成本,线程速度更快。

您应该在您的线程中执行一些计算,然后您就会看到差异。

只有在执行计算密集型任务时,添加到@zmbq 线程才会变慢,因为存在 GIL。如果您的操作是 I/O 绑定的并且其他类似操作很少,那么线程肯定会更快,因为涉及的开销更少。请参阅以下博客以更好地理解。

Exploiting Multiprocessing and Multithreading in Python as a Data Scientist

希望对您有所帮助!