PySpark 2.4.5:使用 PandasUDF 时出现 IllegalArgumentException

PySpark 2.4.5: IllegalArgumentException when using PandasUDF

我正在尝试 Pandas UDF 并面临 IllegalArgumentException。我还尝试复制 PySpark 文档 GroupedData 中的示例进行检查,但仍然出现错误。

以下为环境配置

from pyspark.sql.functions import pandas_udf, PandasUDFType

@pandas_udf('int', PandasUDFType.GROUPED_AGG)  
def min_udf(v):
    return v.min()

sorted(gdf.agg(min_udf(df.age)).collect())  

输出

Py4JJavaError                             Traceback (most recent call last)
<ipython-input-66-94a0a39bfe30> in <module>
----> 1 sorted(gdf.agg(min_udf(sample_data.sqft)).collect())

~/Desktop/test/venv/lib/python3.7/site-packages/pyspark/sql/dataframe.py in collect(self)
    532         """
    533         with SCCallSiteSync(self._sc) as css:
--> 534             sock_info = self._jdf.collectToPython()
    535         return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer())))
    536 

~/Desktop/test/venv/lib/python3.7/site-packages/py4j/java_gateway.py in __call__(self, *args)
   1255         answer = self.gateway_client.send_command(command)
   1256         return_value = get_return_value(
-> 1257             answer, self.gateway_client, self.target_id, self.name)
   1258 
   1259         for temp_arg in temp_args:

~/Desktop/test/venv/lib/python3.7/site-packages/pyspark/sql/utils.py in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

~/Desktop/test/venv/lib/python3.7/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling {0}{1}{2}.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling o665.collectToPython.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 25.0 failed 1 times, most recent failure: Lost task 2.0 in stage 25.0 (TID 232, localhost, executor driver): java.lang.IllegalArgumentException
    at java.nio.ByteBuffer.allocate(ByteBuffer.java:334)
    at org.apache.arrow.vector.ipc.message.MessageSerializer.readMessage(MessageSerializer.java:543)
    at org.apache.arrow.vector.ipc.message.MessageChannelReader.readNext(MessageChannelReader.java:58)
    at org.apache.arrow.vector.ipc.ArrowStreamReader.readSchema(ArrowStreamReader.java:132)
    at org.apache.arrow.vector.ipc.ArrowReader.initialize(ArrowReader.java:181)
    at org.apache.arrow.vector.ipc.ArrowReader.ensureInitialized(ArrowReader.java:172)
    at org.apache.arrow.vector.ipc.ArrowReader.getVectorSchemaRoot(ArrowReader.java:65)
    at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon.read(ArrowPythonRunner.scala:162)
    at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon.read(ArrowPythonRunner.scala:122)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:410)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$$anon.hasNext(Iterator.scala:409)
    at scala.collection.Iterator$$anon.hasNext(Iterator.scala:409)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun.apply(SparkPlan.scala:255)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$anonfun$apply.apply(RDD.scala:858)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$anonfun$apply.apply(RDD.scala:858)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1891)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1879)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1878)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1878)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:927)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:927)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:927)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2112)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2061)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2050)
    at org.apache.spark.util.EventLoop$$anon.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:738)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
    at org.apache.spark.rdd.RDD$$anonfun$collect.apply(RDD.scala:990)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:385)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:989)
    at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:299)
    at org.apache.spark.sql.Dataset$$anonfun$collectToPython.apply(Dataset.scala:3263)
    at org.apache.spark.sql.Dataset$$anonfun$collectToPython.apply(Dataset.scala:3260)
    at org.apache.spark.sql.Dataset$$anonfun.apply(Dataset.scala:3370)
    at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId.apply(SQLExecution.scala:80)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3369)
    at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:3260)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.IllegalArgumentException
    at java.nio.ByteBuffer.allocate(ByteBuffer.java:334)
    at org.apache.arrow.vector.ipc.message.MessageSerializer.readMessage(MessageSerializer.java:543)
    at org.apache.arrow.vector.ipc.message.MessageChannelReader.readNext(MessageChannelReader.java:58)
    at org.apache.arrow.vector.ipc.ArrowStreamReader.readSchema(ArrowStreamReader.java:132)
    at org.apache.arrow.vector.ipc.ArrowReader.initialize(ArrowReader.java:181)
    at org.apache.arrow.vector.ipc.ArrowReader.ensureInitialized(ArrowReader.java:172)
    at org.apache.arrow.vector.ipc.ArrowReader.getVectorSchemaRoot(ArrowReader.java:65)
    at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon.read(ArrowPythonRunner.scala:162)
    at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon.read(ArrowPythonRunner.scala:122)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:410)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$$anon.hasNext(Iterator.scala:409)
    at scala.collection.Iterator$$anon.hasNext(Iterator.scala:409)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun.apply(SparkPlan.scala:255)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun.apply(SparkPlan.scala:247)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$anonfun$apply.apply(RDD.scala:858)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$anonfun$apply.apply(RDD.scala:858)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more



这是由于 Spark 和 Arrow 库不兼容造成的。通常,每个 Spark 版本仅支持一小部分 Arrow 版本(在次要版本中)。此外,Arrow 版本之间存在一些格式不兼容问题。

详情请查看the official documentation

Compatibility Setting for PyArrow >= 0.15.0 and Spark 2.3.x, 2.4.x

Since Arrow 0.15.0, a change in the binary IPC format requires an environment variable to be compatible with previous versions of Arrow <= 0.14.1. This is only necessary to do for PySpark users with versions 2.3.x and 2.4.x that have manually upgraded PyArrow to 0.15.0. The following can be added to conf/spark-env.sh to use the legacy Arrow IPC format:

ARROW_PRE_0_15_IPC_FORMAT=1

This will instruct PyArrow >= 0.15.0 to use the legacy IPC format with the older Arrow Java that is in Spark 2.3.x and 2.4.x. Not setting this environment variable will lead to a similar error as described in SPARK-29367 when running pandas_udfs or toPandas() with Arrow enabled. More information about the Arrow IPC change can be read on the Arrow 0.15.0 release blog.

实际上,我建议使用与构建时使用的完全相同的 Arrow 版本:

等等