如何在 pandas 系列中获得最接近零值的 n 个值?

How can I get the n closest to zero values in a pandas Series?

如何获得最接近 0n 个值,类似于使用 nsmallest() 获得 n 最小值的方法。例如。与

series = pd.Series([-1.0,-0.75,-0.5,-0.25,0.25,0.5,0.75,1.0])
series

0   -1.00
1   -0.75
2   -0.50
3   -0.25
4    0.25
5    0.50
6    0.75
7    1.00
dtype: float64

例如n=4 我想得到以下信息。

0   -0.25
1   0.25
2   -0.50
3   0.50
dtype: float64

如果性能很重要,请使用 Series.abs with Series.argsort for positions, filter n and select by Series.iloc

n = 4
series = series.iloc[series.abs().argsort()[:n]]
print (series)
3   -0.25
4    0.25
2   -0.50
5    0.50
dtype: float64

最后一个如果需要默认索引:

n = 4
series = series.iloc[series.abs().argsort()[:n]].reset_index(drop=True)
print (series)
0   -0.25
1    0.25
2   -0.50
3    0.50
dtype: float64

性能:

series = pd.Series([-1.0,-0.75,-0.5,-0.25,0.25,0.5,0.75,1.0] * 10000)

n = 4000
series = series.iloc[series.abs().argsort()[:n]]
print (series)

In [114]: %timeit series.iloc[series.abs().argsort()[:n]]
794 µs ± 19.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [115]: %timeit series.loc[series.abs().nsmallest(n).index]
2.09 ms ± 34.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

使用 locabsnsmallest

series.loc[series.abs().nsmallest(4).index]

3   -0.25
4    0.25
2   -0.50
5    0.50
dtype: float64