如何向量化 Python 中二维和一维 NumPy 数组的迭代操作?

How to vectorize an iterative operation on a 2D and 1D NumPy array in Python?

我正在尝试加速我的代码以充分利用 NumPy 的矢量化。我已经能够对大部分代码(clr/vlr 函数)中的所有计算进行矢量化,我认为这是 NumPy 的最佳选择。我不相信这些可以再加速,因为 np.einsum 并不真正适用。我不知道如何向量化 rho 函数。特别是,正是这个嵌套的 for 循环给我带来了麻烦:1 - (ratios[i,j]/ (variances[i] + variances[j]))。我试过使用 np.meshgrid 来尝试扩大方差,但这没有用。我一直在尝试在 np.einsum 上关注 this tutorial 但是,它仍然有点令人困惑,我仍然不确定它是否适用于这种情况,因为它涉及的操作比点积和矩阵乘法更多.

有人知道如何向量化这个函数吗?

另外,有什么建议可以加快我的前 2 个函数的代码吗?

import numpy as np
import pandas as pd

def clr(X):
    index = None
    labels = None
    if isinstance(X, pd.DataFrame):
        index = X.index
        labels = X.columns
        X = X.values
    X_log = np.log(X)
    geometric_mean = X_log.mean(axis=1)
    X_clr = X_log - geometric_mean[:,np.newaxis]
    if labels is not None:
        X_clr = pd.DataFrame(X_clr, index=index, columns=labels)
    return X_clr

def vlr(X):
    labels = None
    if isinstance(X, pd.DataFrame):
        labels = X.columns
        X = X.values
    n,m = X.shape
    X_log = np.log(X)
    covariance = np.cov(X_log.T)
    diagonal = np.diagonal(covariance)
    output = -2*covariance + diagonal[:,np.newaxis] + diagonal
    if labels is not None:
        output = pd.DataFrame(output, index=labels, columns=labels)
    return output

def rho(X):
    n, m = X.shape
    labels = None
    if isinstance(X, pd.DataFrame):
        labels = X.columns
        X = X.values

    ratios = vlr(X)
    X_clr = clr(X)
    variances = np.var(X_clr, axis=0)

    # How to vectorize?
    rhos = np.ones_like(ratios)
    for i in range(n):
        for j in range(i+1,m):
            coef = 1 - (ratios[i,j]/ (variances[i] + variances[j]))
            rhos[i,j] = rhos[j,i] = coef

    if labels is not None:
        rhos = pd.DataFrame(rhos, index=labels, columns=labels)
    return rhos

# Load data
X_iris = pd.read_csv("https://pastebin.com/raw/dR59vTD4", sep="\t", index_col=0)
# Calculation
print(rho(X_iris))
#               sepal_length  sepal_width  petal_length  petal_width
# sepal_length      1.000000     0.855012     -0.796224    -0.796770
# sepal_width       0.855012     1.000000     -0.670387    -0.964775
# petal_length     -0.796224    -0.670387      1.000000     0.493560
# petal_width      -0.796770    -0.964775      0.493560     1.000000

您可以替换循环:

for i in range(n):
    for j in range(i+1,m):
        coef = 1 - (ratios[i,j]/ (variances[i] + variances[j]))
        rhos[i,j] = rhos[j,i] = coef

与:

rhos = 1 - ratios / np.add.outer(variances, variances)

np.add.outer(variances, variances)variances 的外和。例如:

np.add.outer(range(3), range(3))
>>> array([[0, 1, 2],
           [1, 2, 3],
           [2, 3, 4]])

鉴于数组的形状和循环数学,我们可以使用上面的代码一次完成 ratios / variances[i] + variances[j]

确认一下:

# original loop
for i in range(n):
    for j in range(i+1,m):
        coef = 1 - (ratios[i,j]/ (variances[i] + variances[j]))
        rhos[i,j] = rhos[j,i] = coef

# array math replacement
rhos2 = 1-ratios / np.add.outer(variances, variances)
np.allclose(rhos, rhos2)
>>> True