Plotly:如何从 x 轴上删除空日期?

Plotly: How to remove empty dates from x axis?

我有一个数据框

   Date        Category    Sum
0  2019-06-03    "25M"      34
1  2019-06-03    "25M"      60
2  2019-06-03    "50M"      23
3  2019-06-04    "25M"      67
4  2019-06-05    "50M"     -90
5  2019-06-05    "50M"     100
6  2019-06-06    "100M"     6
7  2019-06-07    "25M"     -100
8  2019-06-08    "100M"     67
9  2019-06-09    "25M"      450
10 2019-06-10    "50M"      600
11 2019-06-11    "25M"      -9
12 2019-07-12    "50M"      45
13 2019-07-13    "50M"      67
14 2019-07-14    "100M"    130
15 2019-07-14    "50M"      45
16 2019-07-15    "100M"    100
17 2019-07-16    "25M"     -90
18 2019-07-17    "25M"     700
19 2019-07-18    "25M"     -9

我想创建一个绘图,显示在每个描述的日期为不同的 "Category" 添加 "Sum",但如果日期没有任何数据,我想删除这些日期。

代码

df["Date"]=pd.to_datetime(df["Date"], format=("%Y%m%d"))
df=df.sort_values(["Date","Category","Sum"],ascending=False)
df=round(df.groupby(["Date","Category"]).agg({"Sum":"sum"}).reset_index(),1)


fig = px.bar(df, x=df["Date"] , y='Sum',barmode="group",color="Category") 
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
    buttons=list([
        dict(count=1, label="day", step="day", stepmode="todate"),
        dict(count=24, label="montly", step="month", stepmode="todate"),
        dict(count=1, label="year", step="year", stepmode="todate"),
        dict(step="all")
    ])
   ))


fig.show()

我得到这样的图表,但我想从图表中删除空日期

这个问题是由于将您的 'Date' 巧妙地解释为 日期 并在最旧和最新时间​​戳之间创建了一个连续的时间段,有效地显示了没有关联的日期数据作为差距。一个解决方案是在日期列中获取第一个和最后一个日期,并制作一个完整该期间日期的列表,然后找出哪些日期 有任何观察结果,并将其存储在名为 dt_breaks 的变量中。然后,最后,您可以将这些日期包含在:

fig.update_xaxes(
    rangebreaks=[dict(values=dt_breaks)] # hide dates with no values
)

这将在您的可视化中删除这些日期,将 x 值的格式设置为日期,以便您可以使用按钮对数据进行子集化:

正如您所知,这里是没有 rangebreaks=[dict(values=dt_breaks)] 的相同可视化:

为了尽可能简单地完成这项工作,我使用 df=df.sort_values(["Date","Category","Sum"],ascending=True) 重新排列了日期列,而不是像您的原始代码片段中那样 df=df.sort_values(["Date","Category","Sum"],ascending=False)

完整代码:

import pandas as pd
import plotly.express as px

df = pd.DataFrame({'Date': {0: '2019-06-03',
                          1: '2019-06-03',
                          2: '2019-06-03',
                          3: '2019-06-04',
                          4: '2019-06-05',
                          5: '2019-06-05',
                          6: '2019-06-06',
                          7: '2019-06-07',
                          8: '2019-06-08',
                          9: '2019-06-09',
                          10: '2019-06-10',
                          11: '2019-06-11',
                          12: '2019-07-12',
                          13: '2019-07-13',
                          14: '2019-07-14',
                          15: '2019-07-14',
                          16: '2019-07-15',
                          17: '2019-07-16',
                          18: '2019-07-17',
                          19: '2019-07-18'},
                         'Category': {0: '"25M"',
                          1: '"25M"',
                          2: '"50M"',
                          3: '"25M"',
                          4: '"50M"',
                          5: '"50M"',
                          6: '"100M"',
                          7: '"25M"',
                          8: '"100M"',
                          9: '"25M"',
                          10: '"50M"',
                          11: '"25M"',
                          12: '"50M"',
                          13: '"50M"',
                          14: '"100M"',
                          15: '"50M"',
                          16: '"100M"',
                          17: '"25M"',
                          18: '"25M"',
                          19: '"25M"'},
                         'Sum': {0: 34,
                          1: 60,
                          2: 23,
                          3: 67,
                          4: -90,
                          5: 100,
                          6: 6,
                          7: -100,
                          8: 67,
                          9: 450,
                          10: 600,
                          11: -9,
                          12: 45,
                          13: 67,
                          14: 130,
                          15: 45,
                          16: 100,
                          17: -90,
                          18: 700,
                          19: -9}})

df["Date"]=pd.to_datetime(df["Date"], format=("%Y-%m-%d"))
df=df.sort_values(["Date","Category","Sum"],ascending=True)
df=round(df.groupby(["Date","Category"]).agg({"Sum":"sum"}).reset_index(),1)



dt_all = pd.date_range(start=df['Date'].iloc[0],end=df['Date'].iloc[-1])
dt_obs = [d.strftime("%Y-%m-%d") for d in df['Date']]
dt_breaks = [d for d in dt_all.strftime("%Y-%m-%d").tolist() if not d in dt_obs]

df=df.set_index('Date')

#fig = px.bar(df, x=df.index.strftime("%Y/%m/%d") , y='Sum',barmode="group",color="Category") 
fig = px.bar(df, x=df.index , y='Sum',barmode="group",color="Category")

fig.update_xaxes(
    rangebreaks=[dict(values=dt_breaks)] # hide dates with no values
)


fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
    buttons=list([
        dict(count=1, label="day", step="day", stepmode="todate"),
        dict(count=24, label="montly", step="month", stepmode="todate"),
        dict(count=1, label="year", step="year", stepmode="todate"),
        dict(step="all")
    ])
   ))


fig.show()

我的图表也有同样的问题。只需将以下内容添加到布局代码中:

xaxis=dict(type = "category")

注:我用过import plotly.graph_objs as go 不是 import plotly.express as px

这对我有用。希望对你也有帮助。

万一有人在这里玩股票数据,下面是使用范围突破隐藏交易时间和周末之外的代码。

    fig = go.Figure(data=[go.Candlestick(x=df['date'], open=df['Open'], high=df['High'], low=df['Low'], close=df['Close'])])
    fig.update_xaxes(
        rangeslider_visible=True,
        rangebreaks=[
            # NOTE: Below values are bound (not single values), ie. hide x to y
            dict(bounds=["sat", "mon"]),  # hide weekends, eg. hide sat to before mon
            dict(bounds=[16, 9.5], pattern="hour"),  # hide hours outside of 9.30am-4pm
            # dict(values=["2020-12-25", "2021-01-01"])  # hide holidays (Christmas and New Year's, etc)
        ]
    )
    fig.update_layout(
        title='Stock Analysis',
        yaxis_title=f'{symbol} Stock'
    )

    fig.show()

这里是Plotly's doc

要跳过空的日期、时间,您应该使用:

import plotly.graph_objects as go

fig.add_trace(go.Candlestick(x=df['begin'], ...)

fig.layout = dict(title=ticker, xaxis = dict(type="category", categoryorder='category ascending'))
fig.show()

这个例子效果很好。 祝你好运

想添加到 Mega J 的回答中。首先获取您日期范围内的市场假期列表,如下所示:

xnys = xcals.get_calendar("XNYS", start=import_start, end=import_end)
holidays = pd.to_datetime(xnys.day.holidays)
holiday_mask= (holidays > import_start) & (holidays <= import_end)
hols = holidays[holiday_mask].strftime("%Y-%m-%d").tolist()

从上面复制 Mega J 的代码并将假期添加到 rangebreak:

fig = go.Figure(data=[go.Candlestick(x=df['date'], open=df['Open'], high=df['High'], low=df['Low'], close=df['Close'])])
    fig.update_xaxes(
        rangeslider_visible=True,
        rangebreaks=[
            # NOTE: Below values are bound (not single values), ie. hide x to y
            dict(bounds=["sat", "mon"]),  # hide weekends, eg. hide sat to before mon
            dict(bounds=[16, 9.5], pattern="hour"),  # hide hours outside of 9.30am-4pm
            dict(values=hols)  # hide market holidays inside your date range
        ]
    )
    fig.update_layout(
        title='Stock Analysis',
        yaxis_title=f'{symbol} Stock'
    )

    fig.show()