创建 10 个分类变量和 10 个连续随机变量并将它们保存为数据框

Creating 10 categorical and 10 continuous random variables and save them as a data frame

我想创建一个包含 10 个分类变量和 10 个连续随机变量的数据框。我可以使用以下循环来完成。

   p_val=rbeta(10,1,1)   #10 probabilities
    n=20
    library(truncnorm)
    mu_val=rtruncnorm(length(p_val),0,Inf, mean = 100, sd=5)#rnorm(length(p))
    d_mat_cat=matrix(NA, nrow = n, ncol = length(p))
    d_mat_cont= matrix(NA, nrow = n, ncol = length(p))
      for ( j in 1:length(p)){
        d_mat_cat[,j]=rbinom(n,1,p[j]) #Binary RV
        d_mat_cont[,j]=rnorm(n,mu_val[j]) #Cont. RV
      }
    d_mat=cbind(d_mat_cat, d_mat_cont)

欢迎提供任何替代选项。

您可以尝试使用sapply 来运行 rbinomrnormcbind 数据。

cbind(sapply(p_val, rbinom, n = n, size = 1), sapply(mu_val, rnorm, n = n))

rbinomprob 上矢量化,rnormmean 上矢量化,所以你可以使用这个:

cbind(
  matrix(rbinom(n * length(p_val), size = 1, prob = p_val), 
         ncol = length(p_val), byrow = TRUE),
  matrix(rnorm(n * length(mu_val), mean = mu_val),
         ncol = length(mu_val), byrow = TRUE)
)

我们可以稍微聪明地使用 rep 让调用更清晰:

p_val = c(0, 0.5, 1)
mu_val = c(1, 10, 100)
n = 4

## 
matrix(
  c(
    rbinom(n * length(p_val), size = 1, prob = rep(c(0, .5, 1), each = n)),
    rnorm(n * length(mu_val), mean = rep(c(1, 10, 100), each = n))
  ),
  nrow = n,
)

#      [,1] [,2] [,3]       [,4]     [,5]     [,6]
# [1,]    0    1    1  1.1962718 9.373595 100.1739
# [2,]    0    0    1 -0.1854631 9.574706 100.0725
# [3,]    0    1    1  3.4873697 9.447363 100.1345
# [4,]    0    1    1  2.8467450 9.700975 101.3178