在 networkx 中生成具有固定度数的小世界网络
Generate Small World network with fixed degree in networkx
我正在尝试在 networkx 中创建一个具有固定度数的 SW 网络,但找不到如何操作重新布线过程。在 igraph
中,像这样创建一个 SW,其中所有节点的度数都为 8:
import igraph
g = igraph.Graph.Lattice([1,100], nei=4, directed=False, mutual=False, circular=True)
g.rewire(n=int(g.ecount()*0.05), mode="simple")
g.degree()
networkx中有类似的东西吗?我只能看到如何创建格子,但我找不到重新布线的函数。
我想你正在寻找 nx.random_reference
:
import networkx as nx
G = nx.grid_graph(dim=[3,10], periodic=True)
pos = nx.spring_layout(G)
plt.subplot(1,2,1)
nx.draw_networkx(G, pos=pos,with_labels=False)
plt.subplot(1,2,2)
H = nx.random_reference(G)
nx.draw_networkx(H, pos=pos, with_labels=False)
编辑:
这是对 nx.random_reference 来源的改编。此版本的函数允许切换指定部分的边。节点度数和边数是守恒的。函数的原始版本是here。我用 #< 评论指出了所做的更改。
def random_reference(G, niter=1, connectivity=True, seed=None, fraction=1.0): #< fraction kwarg was added
"""Compute a random graph by swapping edges of a given graph.
Parameters
----------
G : graph
An undirected graph with 4 or more nodes.
niter : integer (optional, default=1)
An edge is rewired approximately `niter` times.
connectivity : boolean (optional, default=True)
When True, ensure connectivity for the randomized graph.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
fraction: fraction of edges that undergo rewiring #<
Returns
-------
G : graph
The randomized graph.
Notes
-----
The implementation is adapted from the algorithm by Maslov and Sneppen
(2002) [1]_.
References
----------
.. [1] Maslov, Sergei, and Kim Sneppen.
"Specificity and stability in topology of protein networks."
Science 296.5569 (2002): 910-913.
"""
if G.is_directed():
msg = "random_reference() not defined for directed graphs."
raise nx.NetworkXError(msg)
if len(G) < 4:
raise nx.NetworkXError("Graph has less than four nodes.")
from networkx.utils import cumulative_distribution, discrete_sequence
local_conn = nx.connectivity.local_edge_connectivity
import random #< needed to replace seed.choice below.
G = G.copy()
keys, degrees = zip(*G.degree()) # keys, degree
cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree
nnodes = len(G)
nedges = nx.number_of_edges(G)
niter = niter*nedges
# ntries = int(nnodes*nedges/(nnodes*(nnodes-1)/2)) #< original version
ntries = int(fraction * nedges) #<
if ntries % 2 !=0: #< ensure even numbers
ntries += 1 #<
swapcount = 0
for i in range(niter):
n = 0
while n < ntries:
# pick two random edges without creating edge list
# choose source node indices from discrete distribution
(ai, ci) = discrete_sequence(2, cdistribution=cdf, seed=seed)
if ai == ci:
continue # same source, skip
a = keys[ai] # convert index to label
c = keys[ci]
# choose target uniformly from neighbors
b = random.choice(list(G.neighbors(a))) #< changed seed.choice to random.choice
d = random.choice(list(G.neighbors(c))) #< changed seed.choice to random.choice
bi = keys.index(b)
di = keys.index(d)
if b in [a, c, d] or d in [a, b, c]:
continue # all vertices should be different
# don't create parallel edges
if (d not in G[a]) and (b not in G[c]):
G.add_edge(a, d)
G.add_edge(c, b)
G.remove_edge(a, b)
G.remove_edge(c, d)
# Check if the graph is still connected
if connectivity and local_conn(G, a, b) == 0:
# Not connected, revert the swap
G.remove_edge(a, d)
G.remove_edge(c, b)
G.add_edge(a, b)
G.add_edge(c, d)
else:
swapcount += 1
break
n += 1
return G
我正在尝试在 networkx 中创建一个具有固定度数的 SW 网络,但找不到如何操作重新布线过程。在 igraph
中,像这样创建一个 SW,其中所有节点的度数都为 8:
import igraph
g = igraph.Graph.Lattice([1,100], nei=4, directed=False, mutual=False, circular=True)
g.rewire(n=int(g.ecount()*0.05), mode="simple")
g.degree()
networkx中有类似的东西吗?我只能看到如何创建格子,但我找不到重新布线的函数。
我想你正在寻找 nx.random_reference
:
import networkx as nx
G = nx.grid_graph(dim=[3,10], periodic=True)
pos = nx.spring_layout(G)
plt.subplot(1,2,1)
nx.draw_networkx(G, pos=pos,with_labels=False)
plt.subplot(1,2,2)
H = nx.random_reference(G)
nx.draw_networkx(H, pos=pos, with_labels=False)
编辑:
这是对 nx.random_reference 来源的改编。此版本的函数允许切换指定部分的边。节点度数和边数是守恒的。函数的原始版本是here。我用 #< 评论指出了所做的更改。
def random_reference(G, niter=1, connectivity=True, seed=None, fraction=1.0): #< fraction kwarg was added
"""Compute a random graph by swapping edges of a given graph.
Parameters
----------
G : graph
An undirected graph with 4 or more nodes.
niter : integer (optional, default=1)
An edge is rewired approximately `niter` times.
connectivity : boolean (optional, default=True)
When True, ensure connectivity for the randomized graph.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
fraction: fraction of edges that undergo rewiring #<
Returns
-------
G : graph
The randomized graph.
Notes
-----
The implementation is adapted from the algorithm by Maslov and Sneppen
(2002) [1]_.
References
----------
.. [1] Maslov, Sergei, and Kim Sneppen.
"Specificity and stability in topology of protein networks."
Science 296.5569 (2002): 910-913.
"""
if G.is_directed():
msg = "random_reference() not defined for directed graphs."
raise nx.NetworkXError(msg)
if len(G) < 4:
raise nx.NetworkXError("Graph has less than four nodes.")
from networkx.utils import cumulative_distribution, discrete_sequence
local_conn = nx.connectivity.local_edge_connectivity
import random #< needed to replace seed.choice below.
G = G.copy()
keys, degrees = zip(*G.degree()) # keys, degree
cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree
nnodes = len(G)
nedges = nx.number_of_edges(G)
niter = niter*nedges
# ntries = int(nnodes*nedges/(nnodes*(nnodes-1)/2)) #< original version
ntries = int(fraction * nedges) #<
if ntries % 2 !=0: #< ensure even numbers
ntries += 1 #<
swapcount = 0
for i in range(niter):
n = 0
while n < ntries:
# pick two random edges without creating edge list
# choose source node indices from discrete distribution
(ai, ci) = discrete_sequence(2, cdistribution=cdf, seed=seed)
if ai == ci:
continue # same source, skip
a = keys[ai] # convert index to label
c = keys[ci]
# choose target uniformly from neighbors
b = random.choice(list(G.neighbors(a))) #< changed seed.choice to random.choice
d = random.choice(list(G.neighbors(c))) #< changed seed.choice to random.choice
bi = keys.index(b)
di = keys.index(d)
if b in [a, c, d] or d in [a, b, c]:
continue # all vertices should be different
# don't create parallel edges
if (d not in G[a]) and (b not in G[c]):
G.add_edge(a, d)
G.add_edge(c, b)
G.remove_edge(a, b)
G.remove_edge(c, d)
# Check if the graph is still connected
if connectivity and local_conn(G, a, b) == 0:
# Not connected, revert the swap
G.remove_edge(a, d)
G.remove_edge(c, b)
G.add_edge(a, b)
G.add_edge(c, d)
else:
swapcount += 1
break
n += 1
return G