如何用条件填充缺失值?

How to fill missing values with conditions?

我有一个这样的 pandas DataFrame:

year = [2015, 2016, 2009, 2000, 1998, 2017, 1980, 2016, 2015, 2015]
mode = ["automatic", "automatic", "manual", "manual", np.nan,'automatic', np.nan, 'automatic', np.nan, np.nan]

X = pd.DataFrame({'year': year, 'mode': mode})

print(X)

   year       mode
0  2015  automatic
1  2016  automatic
2  2009     manual
3  2000     manual
4  1998        NaN
5  2017  automatic
6  1980        NaN
7  2016  automatic
8  2015        NaN
9  2015        NaN

我想像这样填充缺失值:如果年份 <2010 我想用 'manual' 填充 NaN 如果年份 >=2010 我想用 'automatic' 填充 NaN 值

我考虑过将 .groupby 函数与这些条件结合使用,但老实说我不知道​​该怎么做:(

如有任何帮助,我将不胜感激。

np.wherefillna

s=pd.Series(np.where(X.year<2010,'manual','automatic'),index=X.index)
X['mode'].fillna(s,inplace=True)
X
Out[192]: 
   year       mode
0  2015  automatic
1  2016  automatic
2  2009     manual
3  2000     manual
4  1998     manual
5  2017  automatic
6  1980     manual
7  2016  automatic
8  2015  automatic
9  2015  automatic

您可以使用np.where

X['mode'] = X['mode'].fillna(pd.Series(np.where(X['year'] >= 2010, 'automatic', 'manual')))

输出

   year       mode
0  2015  automatic
1  2016  automatic
2  2009     manual
3  2000     manual
4  1998     manual
5  2017  automatic
6  1980     manual
7  2016  automatic
8  2015  automatic
9  2015  automatic

我对你的回答的类似方法 :

cond = X['year'] < 2010
X['mode'] = X['mode'].fillna(cond.map({True:'manual', False: 'automatic'}))