Barabasi-Albert 模型的度分布

Degree distribution of Barabasi-Albert model

我已经能够 运行 运行 这个:

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt

n = 20
m = 3

G_barabasi = nx.barabasi_albert_graph(n,m)
plt.figure(figsize=(12,8))
nx.draw(G_barabasi, node_size=4)
plt.show()

以上代码能够绘制节点和边。

但是,我需要获得 Barabasi-Albert 模型的分布度,或者更确切地说是幂律度分布。

我们可以利用 nx.degree_histogram,其中 returns 网络中度数的频率列表,其中度值是列表中的相应索引。

通常在绘制度数分布时取 xy 轴的对数,这有助于判断 networkx 是否为 scale-free (a network whose degree distribution follows a power law) which is the case with the Barabási–Albert model, we can use plt.loglog

import networkx as nx
import matplotlib.pyplot as plt

n = 2000
m = 3
G_barabasi = nx.barabasi_albert_graph(n,m)

degree_freq = nx.degree_histogram(G_barabasi)
degrees = range(len(degree_freq))
plt.figure(figsize=(12, 8)) 
plt.loglog(degrees[m:], degree_freq[m:],'go-') 
plt.xlabel('Degree')
plt.ylabel('Frequency')