我怎样才能解决 not an sstable bad magic number 错误

How can I solve not an sstable bad magic number error

我和我的朋友正在为黑客马拉松制作图像识别的深度学习模型,我们不断遇到这个问题。

基本上当我 运行 我的 run.py 分析和成像它时 returns sstable(错误的幻数)错误。

我们不知道为什么会这样,也不知道该怎么办。

这里是run.py:

    import os, gc
from skimage import io
import glob
import pandas as pd
import glob
import tensorflow as tf
from tensorflow import keras
from keras.preprocessing import image
from tensorflow.keras.models import Sequential, save_model, load_model
import matplotlib.pyplot as plt
import numpy as np
from skimage import transform
from keras.optimizers import Adam
from keras.applications import mobilenet_v2
from PIL import Image
path = []
for file in os.listdir("./media_cdn"):
    path.append(file)
print(path)
filepath = './saved_model'
model = load_model(filepath, custom_objects= None, compile = False)
loss = 'CategoricalCrossentropy'
optimizer = Adam(lr=1e-5)
metrics = ['binary_accuracy']
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
def load(filename):
np_image = Image.open("./media_cdn/" + filename)
np_image = np.array(np_image).astype('float32')/255
np_image = transform.resize(np_image, (244, 244, 3))
np_image = np.expand_dims(np_image, axis=0)
return np_image
new_image = load(path[0])
print(new_image.shape)
new_model = keras.Sequential([model])
new_model.load_weights('./model_weights')
prediction = new_model.predict_classes(new_image)
classes = np.argmax(prediction, axis = -1)
print(classes)
print('This is the Diagnosis:')
if classes == 0:
    print('MELANOMA')
if classes == 1:
    print('Melanocytic Nevus')
if classes == 2:
    print('Basal Cell Carcinoma')
if classes == 3:
    print('Arctinic Keratosis')
if classes == 4:
    print('Benign Keratosis')
if classes == 5:
    print('Dermatofibroma')
if classes == 6:
    print('Vascular Lesion')
if classes == 7:
    print('Squamous Cell Carcinoma')
if classes == 8:
    print(['Unknown', 'BCC', 'AK', 'BKL', 'DF', 'VASC', 'SCC', 'UNK'])
classes = np.argmax(prediction, axis = 1)
print(classes)

调试时,错误显示在 load_model 行。

我们不知道如何修复它,欢迎任何帮助。

好的,我明白了为什么会发生这种情况。看来我必须 运行 我电脑上的模型才能生成正确的变量和模型文件。