验证损失高的原因?

Reason for Validation loss is going high?

我对深度学习模型很陌生,正在尝试使用 LSTM 训练多标签分类文本模型。我有大约 2600 条记录,其中 4 categories.Using 80% 用于训练,其余用于验证.

代码中没有任何复杂的东西,即读取 csv、标记数据并提供给模型。 但是在 3-4 个时期之后,验证损失变得大于 1,而 train_loss 倾向于 zero.As 就我搜索而言,这是过度拟合的情况。为了克服这个问题,我尝试了不同的层,改变 units.But 仍然存在问题。 如果我停在 1-2 个时期,那么预测就会出错。

下面是我的模型创建代码:-

ACCURACY_THRESHOLD = 0.75
class myCallback(tf.keras.callbacks.Callback): 
    def on_epoch_end(self, epoch, logs={}): 
        print(logs.get('val_accuracy'))
        fname='Arabic_Model_'+str(logs.get('val_accuracy'))+'.h5'
        if(logs.get('val_accuracy') > ACCURACY_THRESHOLD):   
          #print("\nWe have reached %2.2f%% accuracy, so we will stopping training." %(acc_thresh*100))   
          #self.model.stop_training = True
          self.model.save(fname)
          #from google.colab import files
          #files.download(fname)      


# The maximum number of words to be used. (most frequent)
MAX_NB_WORDS = vocab_len
# Max number of words in each complaint.
MAX_SEQUENCE_LENGTH = 50
# This is fixed.
EMBEDDING_DIM = 100

callbacks = myCallback()
def create_model(vocabulary_size, seq_len):
   

    model =  models.Sequential()
   
    model.add(Embedding(input_dim=MAX_NB_WORDS+1, output_dim=EMBEDDING_DIM, 
                        input_length=seq_len,mask_zero=True))
    
    model.add(GRU(units=64, return_sequences=True))
    model.add(Dropout(0.4))
    model.add(LSTM(units=50))  
   
    #model.add(LSTM(100)) 
    #model.add(Dropout(0.4))
    #Bidirectional(tf.keras.layers.LSTM(embedding_dim))
    
    #model.add(Bidirectional(LSTM(128)))
    model.add(Dense(50, activation='relu'))
    
    #model.add(Dense(200, activation='relu'))
    model.add(Dense(4, activation='softmax'))

    model.compile(loss='categorical_crossentropy', optimizer='adam', 
                  metrics=['accuracy'])
    
    model.summary()

    return model

model=create_model(MAX_NB_WORDS, MAX_SEQUENCE_LENGTH)

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_4 (Embedding)      (None, 50, 100)           2018600   
_________________________________________________________________
gru_2 (GRU)                  (None, 50, 64)            31680     
_________________________________________________________________
dropout_10 (Dropout)         (None, 50, 64)            0         
_________________________________________________________________
lstm_6 (LSTM)                (None, 14)                4424      
_________________________________________________________________
dense_7 (Dense)              (None, 50)                750       
_________________________________________________________________
dropout_11 (Dropout)         (None, 50)                0         
_________________________________________________________________
dense_8 (Dense)              (None, 4)                 204       
=================================================================
Total params: 2,055,658
Trainable params: 2,055,658
Non-trainable params: 0
_________________________________________________________________


model.fit(sequences, y_train, validation_data=(sequences_test, y_test), 
              epochs=25, batch_size=5, verbose=1,
              callbacks=[callbacks]
             )

如果我能得到一个确定的机会来克服这将是非常有帮助的 overfitting.You 可以参考下面的合作以查看完整代码:-

https://colab.research.google.com/drive/13N94kBKkHIX2TR5B_lETyuH1QTC5VuRf?usp=sharing

编辑:--- 我现在正在使用我用 gensim 创建的预训练嵌入层,但现在准确度达到了 decreased.Also,我的记录大小是 4643。

附上下面的代码:- 在这个 'English_dict.p' 中是我使用 gensim 创建的字典。

embeddings_index=load(open('English_dict.p', 'rb'))

vocab_size=len(embeddings_index)+1

embedding_model = zeros((vocab_size, 100))

for word, i in embedding_matrix.word_index.items():
    embedding_vector = embeddings_index.get(word)
    if embedding_vector is not None:
        embedding_model[i] = embedding_vector

model.add(Embedding(input_dim=MAX_NB_WORDS, output_dim=EMBEDDING_DIM, 
                         weights=[embedding_model],trainable=False,
                        input_length=seq_len,mask_zero=True))


    Model: "sequential_2"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_2 (Embedding)      (None, 50, 100)           2746300   
_________________________________________________________________
gru_2 (GRU)                  (None, 50, 64)            31680     
_________________________________________________________________
dropout_2 (Dropout)          (None, 50, 64)            0         
_________________________________________________________________
lstm_2 (LSTM)                (None, 128)               98816     
_________________________________________________________________
dense_3 (Dense)              (None, 50)                6450      
_________________________________________________________________
dense_4 (Dense)              (None, 4)                 204       
=================================================================
Total params: 2,883,450
Trainable params: 137,150
Non-trainable params: 2,746,300
_________________________________________________________________

如果我做错了什么,请告诉我。大家可以参考上面的联名作参考

没错,就是经典的过拟合。为什么会这样 - 神经网络有超过 200 万个 可训练参数 (2 055 658) 而你只有 2600 条记录(你使用 80% 进行训练)。 NN 太大,而不是泛化记忆

如何解决: