如何使用访问当前行和上一行数据的函数向数据框添加新列?

How can I add a new column to a data frame using a function that accesses data from both current and previous row?

我有一个包含几天数据的数据框:代码

import pandas

[...]

daily_data_f = pandas.DataFrame(daily_data, columns = ['Day', 'Total TODO/TODOE count'])

print(daily_data_f)

生成以下输出:

          Day  Total TODO/TODOE count
0  2020-05-16                      35
1  2020-05-17                      35
2  2020-05-18                      35
3  2020-05-19                      35
4  2020-05-20                      35
..        ...                     ...
64 2020-07-18                      35
65 2020-07-19                      35
66 2020-07-20                      35
68 2020-07-21                     151

我想计算 Total TODO/TODOE count 在随后两天的值之间的差异。该值从 2020-06-28 的 35 跃升至 2020-07-21 的 151。我要为 2020-07-21 151-35=116.

计算的值

建议采用这种方法:

df['new_column_name'] = df.apply(lambda x: my_function(x['value_1'], x['value_2']), axis=1)

我必须写这样的东西:

daily_data_f['First Derivative'] = daily_data_f.apply(lambda x:diff(daily_data_f['Total TODO/TODOE count'], <PREVIOUS_VALUE>), axis=1)

其中 <PREVIOUS_VALUE> 是前一行(天)中 'Total TODO/TODOE count' 的值。

问题:如何为 <PREVIOUS_VALUE>(上一行的 'Total TODO/TODOE count' 的值)编写表达式?

这应该有效:

df['day_before']= np.nan
df['diff']= np.nan
df['day_before'][0] = df['Total TODO/TODOE count'][0] #to avoid null in the first row
df['day_before'] = df['Total TODO/TODOE count'].shift(1)
df['diff'] = df['Total TODO/TODOE count'] - df['day_before']

您将在 diff 列中看到差异。

您可以使用 numpy.diffpandas.DataFrame.diff,如下所示,numpy 方法应该稍微快一些:

numpy:

import numpy as np
df['diff'] = np.diff(df['Total TODO/TODOE count'], prepend=np.nan)

pandas:

import pandas as pd
df['diff'] = df['Total TODO/TODOE count'].diff()

输出:

Day Total TODO/TODOE count  diff
0   2020-05-16  35  NaN
1   2020-05-17  35  0.0
2   2020-05-18  35  0.0
3   2020-05-19  35  0.0
4   2020-05-20  35  0.0
64  2020-07-18  35  0.0
65  2020-07-19  35  0.0
66  2020-07-20  35  0.0
68  2020-07-21  151 116.0