Pytorch training loss function throws: "TypeError: 'Tensor' object is not callable"
Pytorch training loss function throws: "TypeError: 'Tensor' object is not callable"
我使用 Python 3.x 和带有 GPU 的 pytorch 1.5.0。我正在尝试使用 mnist 数据编写一个简单的多项逻辑回归。
我的问题是 loss() 函数在遍历训练批次时抛出 TypeError: 'Tensor' object is not callable
。令我困惑的是 错误没有出现在循环的第一次迭代中,但对于第二批,我得到以下完整错误:
Traceback (most recent call last):
File "/snap/pycharm-community/207/plugins/python-ce/helpers/pydev/pydevd.py", line 1448, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
File "/snap/pycharm-community/207/plugins/python-ce/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/home/pytorch_tutorial/Pytorch_feed_fwd_310720.py", line 78, in <module>
loss = loss(preds,ys)
TypeError: 'Tensor' object is not callable
这里的loss()函数就是loss = nn.CrossEntropyLoss()
。完整代码如下。非常欢迎任何指点。
for epoch in range(5):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
xs, ys = data
opt.zero_grad()
preds = net(xs)
loss = loss(preds,ys)
loss.backward()
opt.step()
# print statistics
running_loss += loss.item()
if i % 1000 == 999: # print every 1000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('epoch {}, loss {}'.format(epoch, loss.item()))
a=1
因为你在本地循环设置loss
将loss = loss(preds, ys)
更改为_loss = loss(preds, ys)
我使用 Python 3.x 和带有 GPU 的 pytorch 1.5.0。我正在尝试使用 mnist 数据编写一个简单的多项逻辑回归。
我的问题是 loss() 函数在遍历训练批次时抛出 TypeError: 'Tensor' object is not callable
。令我困惑的是 错误没有出现在循环的第一次迭代中,但对于第二批,我得到以下完整错误:
Traceback (most recent call last):
File "/snap/pycharm-community/207/plugins/python-ce/helpers/pydev/pydevd.py", line 1448, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
File "/snap/pycharm-community/207/plugins/python-ce/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/home/pytorch_tutorial/Pytorch_feed_fwd_310720.py", line 78, in <module>
loss = loss(preds,ys)
TypeError: 'Tensor' object is not callable
这里的loss()函数就是loss = nn.CrossEntropyLoss()
。完整代码如下。非常欢迎任何指点。
for epoch in range(5):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
xs, ys = data
opt.zero_grad()
preds = net(xs)
loss = loss(preds,ys)
loss.backward()
opt.step()
# print statistics
running_loss += loss.item()
if i % 1000 == 999: # print every 1000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('epoch {}, loss {}'.format(epoch, loss.item()))
a=1
因为你在本地循环设置loss
将loss = loss(preds, ys)
更改为_loss = loss(preds, ys)