读取按 nan 行拆分的数据帧并提取 Python 中的特定列

Read dataframe split by nan rows and extract specific columns in Python

我有一个示例 excel 文件 data2.xlsx 来自 here,它有一个 Sheet1 如下:

预处理:

2018, 2019, 2020, numobject 类型,我需要将其转换为浮点数:

cols = ['2018', '2019', '2020', 'num']
df[cols].replace('--', np.nan, regex=True).astype(float)

我还需要从 2019-bj-price-quantity, 2019-sh-price-quantity, 2019-gz-price-quantity, 2019-sz-price-quantity

中提取 bj, sh, gz, sz 中的城市名称
pattern = '|'.join(['2019-', '-price-quantity'])
df['city'] = df['city'].str.replace(pattern, '')

最后,我需要为每个城市提取 num 中的 pricequantity,并像这样重塑一个新的数据框:

我怎么能在 pandas 中做到这一点?谢谢。

更新:

df = pd.read_excel('./data2.xlsx', sheet_name = 'Sheet1', header = None)
df.groupby(df.iloc[:, 0].isna().cumsum()).transform('first')

输出:

                         0       1       2       3    4
0   2019-bj-price-quantity  2018.0  2019.0  2020.0  num
1   2019-bj-price-quantity  2018.0  2019.0  2020.0  num
2   2019-bj-price-quantity  2018.0  2019.0  2020.0  num
3   2019-bj-price-quantity  2018.0  2019.0  2020.0  num
4   2019-sh-price-quantity  2018.0  2019.0  2020.0  num
5   2019-sh-price-quantity  2018.0  2019.0  2020.0  num
6   2019-sh-price-quantity  2018.0  2019.0  2020.0  num
7   2019-sh-price-quantity  2018.0  2019.0  2020.0  num
8   2019-sh-price-quantity  2018.0  2019.0  2020.0  num
9                      NaN     NaN     NaN     NaN  NaN
10  2019-gz-price-quantity  2018.0  2019.0  2020.0  num
11  2019-gz-price-quantity  2018.0  2019.0  2020.0  num
12  2019-gz-price-quantity  2018.0  2019.0  2020.0  num
13  2019-gz-price-quantity  2018.0  2019.0  2020.0  num
14  2019-gz-price-quantity  2018.0  2019.0  2020.0  num
15                     NaN     NaN     NaN     NaN  NaN
16  2019-sz-price-quantity  2018.0  2019.0  2020.0  num
17  2019-sz-price-quantity  2018.0  2019.0  2020.0  num
18  2019-sz-price-quantity  2018.0  2019.0  2020.0  num
19  2019-sz-price-quantity  2018.0  2019.0  2020.0  num
20  2019-sz-price-quantity  2018.0  2019.0  2020.0  num

参考相关:

*注意当列名不确定时我使用列索引

您可以将 table 拆分为

df['city'] = df.groupby(df.iloc[:, 0].isna().cumsum()).transform(first)
df.dropna(subset=df.columns[0], inplace=True)
df = df.loc[df[df.colmns[0]] != df.city]

现在 df 将有一个带有 table 标题的附加列 city,而标题和空行已被丢弃。您可以使用 .str.split.str.get

访问该 city 列的任何部分
df.city = df.city.str.split('-').str.get(1)

最后您只想保留 num 列,这是最简单的步骤

df = df.iloc[:, [0, 4, 5]]
df = df.pivot(index='city', columns=df.columns[0], values=df.columns[1])

我的代码基于jezrael的精彩回答,欢迎分享更好的解决方案或改进它:

# add header=None for default columns names
df = pd.read_excel('./data2.xlsx', sheet_name = 'Sheet1', header=None)

# convert columns by second row
df.columns = df.iloc[1].rename(None)

# create new column `city` by forward filling non missing values by second column
df.insert(0, 'city', df.iloc[:, 0].mask(df.iloc[:, 1].notna()).ffill())

pattern = '|'.join(['2019-', '-price-quantity'])
df['city'] = df['city'].str.replace(pattern, '')
df['year'] = df['year'].str.replace(pattern, '')
# convert floats to integers 
df.columns = [int(x) if isinstance(x, float) else x for x in df.columns]
df = df[df.year.isin(['price', 'quantity'])]
df = df[['city', 'year', 'num']]
df['num'] = df['num'].replace('--', np.nan, regex=True).astype(float)
df = df.set_index(['city', 'year']).unstack().reset_index()
df.columns = df.columns.droplevel(0)
df.rename({'year': 'city'}, axis=1, inplace=True)
print(df)

输出:

year      price  quantity
0     bj   21.0      10.0
1     gz    6.0      15.0
2     sh   12.0       NaN
3     sz   13.0       NaN