Spark RDD 和 Dataframe 转换优化

Spark RDD and Dataframe transformation optimisation

我是 Spark 的新手,有以下关于 RDD 和 Dataframes 的高级问题,如果我没记错的话,它们是建立在 RDD 之上的:

我知道可以对 RDD 进行两种类型的操作,转换和操作。我还了解到,仅当对作为该转换产物的 RDD 执行操作时才执行转换。鉴于 RDD 在内存中,我想知道是否有可能优化这些 RDD 消耗的内存量,举个例子:

KafkaDF = KafkaDFRaw.select(
        KafkaDFRaw.key,
        KafkaDFRaw.value,
        KafkaDFRaw.topic,
        unix_timestamp('timestamp',
                       'yyyy-MM-dd HH:mm:ss').alias('kafka_arrival_time')
    ).withColumn("spark_arrival_time", udf(time.time, DoubleType())())

我有一个 KafkaDFRaw 数据框,我生成了一个名为 KafkaDF 的新 RDD。然后我希望向这个新的 RDD 添加列。我应该将它们添加到现有的 RDD 中吗?像这样:

decoded_value_udf = udf(lambda value: value.decode("utf-8"))
    KafkaDF = KafkaDF\
        .withColumn(
            "cleanKey", decoded_value_udf(KafkaDF.key))\
        .withColumn(
            "cleanValue", decoded_value_udf(KafkaDF.value))

或者我应该从上一个数据框创建一个新的数据框吗?像这样:

decoded_value_udf = udf(lambda value: value.decode("utf-8"))
    KafkaDF_NEW = KafkaDF\
        .withColumn(
            "cleanKey", decoded_value_udf(KafkaDF.key))\
        .withColumn(
            "cleanValue", decoded_value_udf(KafkaDF.value))

这对内存优化有影响吗?

提前感谢您的帮助。

每当调用操作时,都会执行优化的 dag,并按计划使用内存。 大家可以对比一下执行计划来了解:

df.explain(true)
df_new.explain(true)

在两者之间创建额外的变量来保存转换不会影响内存利用率。内存要求将取决于数据大小、分区大小、随机播放等。