执行回归后如何取消展平和成像?
How to un-flatten and image after performing regression?
以下是我如何拼合这些图像:
N = images.shape[0]
images = np.reshape(images, (N, -1))
images_two = np.reshape(images_two, (N, -1))
我该如何撤销这个过程?
存储展平前的原始形状:
old_shape = images.shape
N = images.shape[0]
images = np.reshape(images, (N, -1))
images_two = np.reshape(images_two, (N, -1))
## to reshape
images.reshape(old_shape)
你可以这样做:
num_imgs = images.shape[0]
img_shape = images.shape[1:]
images_flat = images.reshape((num_imgs, -1))
images_unflat = images_flat.reshape((num_imgs, ) + img_shape))
以下是我如何拼合这些图像:
N = images.shape[0]
images = np.reshape(images, (N, -1))
images_two = np.reshape(images_two, (N, -1))
我该如何撤销这个过程?
存储展平前的原始形状:
old_shape = images.shape
N = images.shape[0]
images = np.reshape(images, (N, -1))
images_two = np.reshape(images_two, (N, -1))
## to reshape
images.reshape(old_shape)
你可以这样做:
num_imgs = images.shape[0]
img_shape = images.shape[1:]
images_flat = images.reshape((num_imgs, -1))
images_unflat = images_flat.reshape((num_imgs, ) + img_shape))