如何使用给定的 class 从字符串数组实现二叉树,然后对其进行序列化、反序列化和遍历?

How to implement a binary tree from a string array using a given class and then serialize, deserialize, and traverse it?

我有一个数据结构编码项目class,但我不知道从哪里开始。作业是这样问的:

Input your binary tree as an array, using the array representation and node labels A, ..., J, as Strings. Label null stands for a non-existent node, not for a node having a value of null. Check the validity of your binary tree input: each node, excepting the root, should have a father. Generate the dynamic memory implementation of the tree, using only the nodes with labels different than null. Save the obtained BinaryTreeobject as a file, using serialization. Deserialize the file to restore the tree. Perform a preorder, a postorder, and an inorder tree traversal of the restored tree and list the labels of the visited nodes. Create unit tests and implement a test class.

给我一棵二叉树class:

public class BinaryTree<T> implements java.io.Serializable
{    
private T data;
private BinaryTree<T> left;
private BinaryTree<T> right;
public BinaryTree(T data) 
{ 
this.data = data; 
left = null; 
right = null;
} 
public T getData() 
{
return data;
}    
public void attachLeft(BinaryTree<T> tree) 
{ 
if (tree != null) left = tree; 
}    
public void attachRight(BinaryTree<T> tree)
{
if (tree != null) right = tree;
}   
public BinaryTree<T> detachLeft() 
{ 
BinaryTree<T> t = left; 
left = null; 
return t;  
} 
public BinaryTree<T> detachRight() 
{ 
BinaryTree<T> t = right;
right = null;
return t;
}     
public boolean isEmpty()
{ 
return data == null;
}    
public void inOrder(BinaryTree <T> tree)   
{        
if ( tree != null) 
{   
inOrder(tree.left);
System.out.println(tree.getData());
inOrder(tree.right); 
}    
}
public void preOrder(BinaryTree <T> tree)
{
}
public void postOrder(BinaryTree <T> tree) {
}
}

我希望尽可能将其分解为更小的步骤,因为我不确定从哪里开始。另外,我没有序列化经验。

我不是要代码,只是一个指南。

  • 假设字符串索引与节点的关系是left child = 2 * parent index + 1right child = 2 * parent index + 2.

  • 现在字符串以 "A, B, ..., J" 的形式给出,您可以将字符串拆分为一个数组,其中 arr[0] = Aarr[N] = J

  • 每个元素本身就是一棵大小为1的树,它们是包含所有元素的大树的子树。

  • 根据索引,迭代或递归添加到一棵大树中。例如,arr[0] = A = rootarr[1] = left child = B // because 1 = 2 * 0 + 1arr[2] = right child = C // because 2 = 2 * 0 + 2等。忽略空节点,现在你有了最终的树。