Tensorflow.js 裁剪图像 return 零张量
Tensorflow.js cropping image return zeros tensor
我有一个自定义模型,它接受来自 BlazeFace 模型的裁剪面孔,然后输出 3 类 的预测。
在将它们发送到我的自定义模型之前,我将裁剪后的脸调整为 [1,224,224,3]
的形状
每次预测的输出:
Float32Array [
6.522771905936864e-11,
3.698188456857654e-12,
1,
]
调整裁剪后的人脸大小并进行预测的代码:
const getPrediction = async tensor => {
if (!tensor) {
console.log("Tensor not found!");
}
// Load both models
const bfModel = await blazeFaceModel;
const returnTensors = true;
const faces = await bfModel
.estimateFaces(tensor, returnTensors)
.catch(e => console.log(e));
// Reshape tensor from rank 3 to rank 4
const tensorReshaped = tensor.reshape([1, 224, 224, 3]);
const scale = {
height: styles.camera.height / tensorDims.height,
width: styles.camera.width / tensorDims.width
};
// Faces is an array of objects
if (!isEmpty(faces)) {
// Setting faces in state
setModelFaces({ faces });
}
//Looping over array of objects in faces
faces.map((face, i) => {
const { topLeft, bottomRight } = face;
const width = Math.floor(
bottomRight.dataSync()[0] - topLeft.dataSync()[0] * scale.width
);
const height = Math.floor(
bottomRight.dataSync()[1] - topLeft.dataSync()[1] * scale.height
);
const boxes = tf
.concat([topLeft.dataSync(), bottomRight.dataSync()])
.reshape([-1, 4]);
// Cropping out faces from original tensor
const crop = tf.image.cropAndResize(
tensorReshaped,
boxes,
[0],
[height, width]
);
// Resize cropped faces to [1,224,224,3]
const alignCorners = true;
const imageResize = tf.image.resizeBilinear(
crop,
[224, 224],
alignCorners
);
makePrediction(imageResize);
});
};
// Make predictions on the tensors
const makePrediction = async image => {
if (!image) {
console.log("No input!");
}
const model = await loadedModel;
const prediction = await model.predict(image, { batchSize: 1 });
if (!prediction || isEmpty(prediction)) {
console.log("Prediction not available");
}
console.log(prediction);
console.log(prediction.dataSync());
};
编辑
我尝试将预测的批量大小更改为 1,但问题仍然存在
我尝试将 keras 模型重新转换为 tfjs 格式,但仍然是同样的问题
我在预测后尝试处理张量,但仍然存在错误
所以我打印出调整大小后的面的张量及其很多 0
Tensor before prediction
Tensor
[[[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
...
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]]]
undefined
Tensor during prediction
Tensor
[[[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
...
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]]]
undefined
boxes
of tf.image.cropAndResize
是0到1之间的归一化坐标。因此topLeft和bottomRight应该使用[imageWidth, imageHeight]
归一化
normalizedTopLeft = topLeft.div(tensor.shape.slice(-3, -2))
// slice will get [h, w] of a tensor of shape [b, h, w, ch] or [h, w, ch]
// do likewise for bottomRight
// use normalizedTopLeft instead of topLeft for cropping
我有一个自定义模型,它接受来自 BlazeFace 模型的裁剪面孔,然后输出 3 类 的预测。
在将它们发送到我的自定义模型之前,我将裁剪后的脸调整为 [1,224,224,3]
的形状每次预测的输出:
Float32Array [
6.522771905936864e-11,
3.698188456857654e-12,
1,
]
调整裁剪后的人脸大小并进行预测的代码:
const getPrediction = async tensor => {
if (!tensor) {
console.log("Tensor not found!");
}
// Load both models
const bfModel = await blazeFaceModel;
const returnTensors = true;
const faces = await bfModel
.estimateFaces(tensor, returnTensors)
.catch(e => console.log(e));
// Reshape tensor from rank 3 to rank 4
const tensorReshaped = tensor.reshape([1, 224, 224, 3]);
const scale = {
height: styles.camera.height / tensorDims.height,
width: styles.camera.width / tensorDims.width
};
// Faces is an array of objects
if (!isEmpty(faces)) {
// Setting faces in state
setModelFaces({ faces });
}
//Looping over array of objects in faces
faces.map((face, i) => {
const { topLeft, bottomRight } = face;
const width = Math.floor(
bottomRight.dataSync()[0] - topLeft.dataSync()[0] * scale.width
);
const height = Math.floor(
bottomRight.dataSync()[1] - topLeft.dataSync()[1] * scale.height
);
const boxes = tf
.concat([topLeft.dataSync(), bottomRight.dataSync()])
.reshape([-1, 4]);
// Cropping out faces from original tensor
const crop = tf.image.cropAndResize(
tensorReshaped,
boxes,
[0],
[height, width]
);
// Resize cropped faces to [1,224,224,3]
const alignCorners = true;
const imageResize = tf.image.resizeBilinear(
crop,
[224, 224],
alignCorners
);
makePrediction(imageResize);
});
};
// Make predictions on the tensors
const makePrediction = async image => {
if (!image) {
console.log("No input!");
}
const model = await loadedModel;
const prediction = await model.predict(image, { batchSize: 1 });
if (!prediction || isEmpty(prediction)) {
console.log("Prediction not available");
}
console.log(prediction);
console.log(prediction.dataSync());
};
编辑
我尝试将预测的批量大小更改为 1,但问题仍然存在
我尝试将 keras 模型重新转换为 tfjs 格式,但仍然是同样的问题
我在预测后尝试处理张量,但仍然存在错误
所以我打印出调整大小后的面的张量及其很多 0
Tensor before prediction
Tensor
[[[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
...
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]]]
undefined
Tensor during prediction
Tensor
[[[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
...
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]]]
undefined
boxes
of tf.image.cropAndResize
是0到1之间的归一化坐标。因此topLeft和bottomRight应该使用[imageWidth, imageHeight]
normalizedTopLeft = topLeft.div(tensor.shape.slice(-3, -2))
// slice will get [h, w] of a tensor of shape [b, h, w, ch] or [h, w, ch]
// do likewise for bottomRight
// use normalizedTopLeft instead of topLeft for cropping