Python 将 class 权重传递给 SequentialFeatureSelector?
Python pass class weights to SequentialFeatureSelector?
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
xgboost class化器
XGB = xgboost.XGBClassifier(num_class = 3)
设置特征选择
SFSres = SFS(XGB, k_features=8,cv=5)
正在尝试传递 class 权重以进行特征选择
SFSres = SFSres.fit(train_data, train_labels, fit_params={'sample_weight':weights})
结果
TypeError: fit() got an unexpected keyword argument 'fit_params'
如何将 class 权重传递给特征选择?
"the documentation is incorrect and needs to be updated"
决定:
fit(train_data, train_labels, sample_weight=weights)
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
xgboost class化器
XGB = xgboost.XGBClassifier(num_class = 3)
设置特征选择
SFSres = SFS(XGB, k_features=8,cv=5)
正在尝试传递 class 权重以进行特征选择
SFSres = SFSres.fit(train_data, train_labels, fit_params={'sample_weight':weights})
结果
TypeError: fit() got an unexpected keyword argument 'fit_params'
如何将 class 权重传递给特征选择?
"the documentation is incorrect and needs to be updated"
决定:
fit(train_data, train_labels, sample_weight=weights)