Python pandas 从 pandas 数据帧索引中删除每天的第一分钟

Python pandas remove first minute for every day from a pandas dataframe index

我的 contract_df 数据框结构如下:

df = pd.DataFrame({'quote_ts': ['2020-05-15 14:01:00.522517', 
                                '2020-05-15 14:01:00.599999', 
                                '2020-05-15 15:00:01.234517',
                                '2020-05-16 14:00:00.312518',
                                '2020-05-16 14:01:00.582517',
                                '2020-05-17 14:00:00.122983',
                                '2020-05-17 14:02:00.524567',
                                '2020-05-18 14:00:00.522517'],
                   'price': [1000, 1200, 1300, 1000, 1400, 1800, 1900, 1600]})

df = df.set_index('quote_ts')

我需要删除每天的第一分钟,以便生成的数据帧等于:

df = pd.DataFrame({'quote_ts': ['2020-05-15 15:00:01.234517',
                                '2020-05-16 14:01:00.582517',
                                '2020-05-17 14:02:00.524567'],
                   'price': [1300, 1400, 1600]})

df = df.set_index('quote_ts')

第一分钟在不同的日子里并不总是相同的。

让我们尝试 isingroupby head

df.index=pd.to_datetime(df.index)
toremove = df.groupby(df.index.date).head(1).index.strftime('%Y-%m-%d %H:%M')
df = df[~df.index.strftime('%Y-%m-%d %H:%M').isin(toremove)]
df
                            price
quote_ts                         
2020-05-15 15:00:01.234517   1300
2020-05-16 14:01:00.582517   1400
2020-05-17 14:02:00.524567   1900

使用groupby.rank创建布尔掩码

s = pd.to_datetime(df.index)
m = ((s.floor('Min').to_series().groupby(s.date).rank(method='dense') > 1)
                                                .to_numpy())
df_final = df[m]

Out[338]:
                            price
quote_ts
2020-05-15 15:00:01.234517   1300
2020-05-16 14:01:00.582517   1400
2020-05-17 14:02:00.524567   1900