java 中带有 spark 文件流的检查点
Checkpoint with spark file streaming in java
我想用 spark 文件流应用程序实现检查点,以处理来自 hadoop 的所有未处理文件,如果在任何情况下我的 spark 流应用程序 stop/terminates。我正在关注:streaming programming guide,但未找到 JavaStreamingContextFactory。请帮帮我,我该怎么做。
我的代码是
public class StartAppWithCheckPoint {
public static void main(String[] args) {
try {
String filePath = "hdfs://Master:9000/mmi_traffic/listenerTransaction/2020/*/*/*/";
String checkpointDirectory = "hdfs://Mongo1:9000/probeAnalysis/checkpoint";
SparkSession sparkSession = JavaSparkSessionSingleton.getInstance();
JavaStreamingContextFactory contextFactory = new JavaStreamingContextFactory() {
@Override public JavaStreamingContext create() {
SparkConf sparkConf = new SparkConf().setAppName("ProbeAnalysis");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
JavaStreamingContext jssc = new JavaStreamingContext(sc, Durations.seconds(300));
JavaDStream<String> lines = jssc.textFileStream(filePath).cache();
jssc.checkpoint(checkpointDirectory);
return jssc;
}
};
JavaStreamingContext context = JavaStreamingContext.getOrCreate(checkpointDirectory, contextFactory);
context.start();
context.awaitTermination();
context.close();
sparkSession.close();
} catch(Exception e) {
e.printStackTrace();
}
}
}
你必须使用Checkpointing
对于检查点,使用 有状态 转换 updateStateByKey
或 reduceByKeyAndWindow
。 spark-examples provided along with prebuild spark and spark source in git-hub. For your specific, see JavaStatefulNetworkWordCount.java;
中有很多示例
我想用 spark 文件流应用程序实现检查点,以处理来自 hadoop 的所有未处理文件,如果在任何情况下我的 spark 流应用程序 stop/terminates。我正在关注:streaming programming guide,但未找到 JavaStreamingContextFactory。请帮帮我,我该怎么做。
我的代码是
public class StartAppWithCheckPoint {
public static void main(String[] args) {
try {
String filePath = "hdfs://Master:9000/mmi_traffic/listenerTransaction/2020/*/*/*/";
String checkpointDirectory = "hdfs://Mongo1:9000/probeAnalysis/checkpoint";
SparkSession sparkSession = JavaSparkSessionSingleton.getInstance();
JavaStreamingContextFactory contextFactory = new JavaStreamingContextFactory() {
@Override public JavaStreamingContext create() {
SparkConf sparkConf = new SparkConf().setAppName("ProbeAnalysis");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
JavaStreamingContext jssc = new JavaStreamingContext(sc, Durations.seconds(300));
JavaDStream<String> lines = jssc.textFileStream(filePath).cache();
jssc.checkpoint(checkpointDirectory);
return jssc;
}
};
JavaStreamingContext context = JavaStreamingContext.getOrCreate(checkpointDirectory, contextFactory);
context.start();
context.awaitTermination();
context.close();
sparkSession.close();
} catch(Exception e) {
e.printStackTrace();
}
}
}
你必须使用Checkpointing
对于检查点,使用 有状态 转换 updateStateByKey
或 reduceByKeyAndWindow
。 spark-examples provided along with prebuild spark and spark source in git-hub. For your specific, see JavaStatefulNetworkWordCount.java;