如何使用 pandas.Grouper 对整数进行区间分组?
How to use pandas.Grouper to group integers in intervals?
难道pandas.Grouper
只被认为是用来约会的吗?或者它也可以用于整数吗?
我想结合使用 pandas.Grouper
和 pandas.pivot_table
。
这是一个关于如何对包含 dates
:
的列使用 pandas.Grouper
的示例
import pandas
import numpy
from datetime import datetime
date_data_frame = pandas.DataFrame(
{
"date": [
datetime(2019, 9, 1, 13, 0),
datetime(2019, 9, 1, 13, 5),
datetime(2019, 10, 1, 20, 0),
datetime(2019, 10, 3, 10, 0),
datetime(2019, 12, 2, 12, 0),
datetime(2019, 9, 2, 14, 0),
],
"name": "Maria Maria Maria Maria Jane Carlos".split(),
"value": [25, 9, 4, 3, 2, 8],
}
)
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
index=[pandas.Grouper(key="date", freq="M")], #grouped entries to show as row headers
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
现在假设我没有日期,但有 1 到 100 之间的整数,我想将它们以 10 为间隔进行分组(1-10、11-20、 ...)。
如何使用 pandas.Grouper
?
指定分组的间隔
我试过 freq="10" 但没有成功:
import pandas
import numpy
from datetime import datetime
date_data_frame = pandas.DataFrame(
{
"param": [
1,
5,
10,
15,
22,
33,
],
"name": "Maria Maria Maria Maria Jane Carlos".split(),
"value": [25, 9, 4, 3, 2, 8],
}
)
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
index=[pandas.Grouper(key="param", freq="10")], #grouped entries to show as row headers
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
如果 pandas.Grouper
无法做到这一点,我应该使用什么来对我的数据透视表 table 的参数索引进行分组?
可能的想法是使用整数除法,我认为 Grouper
仅适用于日期时间:
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
index= (date_data_frame["param"] - 1) // 10, #grouped entries to show as row headers
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
name Carlos Jane Maria
param
0 NaN NaN 34.0
1 NaN NaN 7.0
2 NaN 2.0 NaN
3 8.0 NaN NaN
或使用 cut
并从右侧关闭间隔:
bins = range(0, date_data_frame["param"].max() // 10 * 10 + 20, 10)
labels = ['{}-{}'.format(i + 1, j) for i, j in zip(bins[:-1], bins[1:])]
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
#grouped entries to show as row headers
index= pd.cut(date_data_frame["param"], bins=bins, labels=labels),
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
name Carlos Jane Maria
param
1-10 NaN NaN 38.0
11-20 NaN NaN 3.0
21-30 NaN 2.0 NaN
31-40 8.0 NaN NaN
是否为(right=False
参数):
bins = range(0, date_data_frame["param"].max() // 10 * 10 + 20, 10)
labels = ['{}-{}'.format(i + 1, j) for i, j in zip(bins[:-1], bins[1:])]
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
#grouped entries to show as row headers
index= pd.cut(date_data_frame["param"], bins=bins, labels=labels, right=False),
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
name Carlos Jane Maria
param
1-10 NaN NaN 34.0
11-20 NaN NaN 7.0
21-30 NaN 2.0 NaN
31-40 8.0 NaN NaN
难道pandas.Grouper
只被认为是用来约会的吗?或者它也可以用于整数吗?
我想结合使用 pandas.Grouper
和 pandas.pivot_table
。
这是一个关于如何对包含 dates
:
pandas.Grouper
的示例
import pandas
import numpy
from datetime import datetime
date_data_frame = pandas.DataFrame(
{
"date": [
datetime(2019, 9, 1, 13, 0),
datetime(2019, 9, 1, 13, 5),
datetime(2019, 10, 1, 20, 0),
datetime(2019, 10, 3, 10, 0),
datetime(2019, 12, 2, 12, 0),
datetime(2019, 9, 2, 14, 0),
],
"name": "Maria Maria Maria Maria Jane Carlos".split(),
"value": [25, 9, 4, 3, 2, 8],
}
)
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
index=[pandas.Grouper(key="date", freq="M")], #grouped entries to show as row headers
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
现在假设我没有日期,但有 1 到 100 之间的整数,我想将它们以 10 为间隔进行分组(1-10、11-20、 ...)。
如何使用 pandas.Grouper
?
我试过 freq="10" 但没有成功:
import pandas
import numpy
from datetime import datetime
date_data_frame = pandas.DataFrame(
{
"param": [
1,
5,
10,
15,
22,
33,
],
"name": "Maria Maria Maria Maria Jane Carlos".split(),
"value": [25, 9, 4, 3, 2, 8],
}
)
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
index=[pandas.Grouper(key="param", freq="10")], #grouped entries to show as row headers
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
如果 pandas.Grouper
无法做到这一点,我应该使用什么来对我的数据透视表 table 的参数索引进行分组?
可能的想法是使用整数除法,我认为 Grouper
仅适用于日期时间:
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
index= (date_data_frame["param"] - 1) // 10, #grouped entries to show as row headers
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
name Carlos Jane Maria
param
0 NaN NaN 34.0
1 NaN NaN 7.0
2 NaN 2.0 NaN
3 8.0 NaN NaN
或使用 cut
并从右侧关闭间隔:
bins = range(0, date_data_frame["param"].max() // 10 * 10 + 20, 10)
labels = ['{}-{}'.format(i + 1, j) for i, j in zip(bins[:-1], bins[1:])]
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
#grouped entries to show as row headers
index= pd.cut(date_data_frame["param"], bins=bins, labels=labels),
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
name Carlos Jane Maria
param
1-10 NaN NaN 38.0
11-20 NaN NaN 3.0
21-30 NaN 2.0 NaN
31-40 8.0 NaN NaN
是否为(right=False
参数):
bins = range(0, date_data_frame["param"].max() // 10 * 10 + 20, 10)
labels = ['{}-{}'.format(i + 1, j) for i, j in zip(bins[:-1], bins[1:])]
grouped_pivot_table = pandas.pivot_table(
date_data_frame,
#grouped entries to show as row headers
index= pd.cut(date_data_frame["param"], bins=bins, labels=labels, right=False),
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)
print(grouped_pivot_table)
name Carlos Jane Maria
param
1-10 NaN NaN 34.0
11-20 NaN NaN 7.0
21-30 NaN 2.0 NaN
31-40 8.0 NaN NaN