Keras Lambda 层的内存泄漏

Memory leak with Keras Lambda layer

我需要拆分张量的通道,以便为每个拆分应用不同的归一化。为此,我使用了 Keras 的 Lambda 层:

# split the channels in two (first part for IN, second for BN)
x_in = Lambda(lambda x: x[:, :, :, :split_index])(x)
x_bn = Lambda(lambda x: x[:, :, :, split_index:])(x)

# apply IN and BN on their respective group of channels
x_in = InstanceNormalization(axis=3)(x_in)
x_bn = BatchNormalization(axis=3)(x_bn)

# concatenate outputs of IN and BN
x = Concatenate(axis=3)([x_in, x_bn])

一切都按预期工作(请参阅下面的 model.summary())但 RAM 在每次迭代中不断增加,表明存在内存泄漏。

Layer (type)                    Output Shape         Param #     Connected to
==================================================================================================
input_1 (InputLayer)            (None, 832, 832, 1)  0
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 832, 832, 32) 320         input_1[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda)               (None, 832, 832, 16) 0           conv1[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda)               (None, 832, 832, 16) 0           conv1[0][0]
__________________________________________________________________________________________________
instance_normalization_1 (Insta (None, 832, 832, 16) 32          lambda_1[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 832, 832, 16) 64          lambda_2[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 832, 832, 32) 0           instance_normalization_1[0][0]
                                                                 batch_normalization_1[0][0]
__________________________________________________________________________________________________

我确信泄漏来自 Lambda 层,因为我尝试了另一种策略,我不拆分而是在所有通道上独立应用两个规范化,然后将特征添加在一起。我没有遇到此代码的任何内存泄漏:

# apply IN and BN on the input tensor independently
x_in = InstanceNormalization(axis=3)(x)
x_bn = BatchNormalization(axis=3)(x)

# addition of the feature maps outputed by IN and BN
x = Add()([x_in, x_bn])

有解决此内存泄漏的想法吗?我正在使用 Keras 2.2.4 和 Tensorflow 1.15.3,我现在无法升级到 TF 2 或 tf.keras。

您可能需要考虑使用自定义层而不是 lambda 层。
可能是keras lambda层出现了一些故障。

Thibault Bacqueyrisses答案是对的,自定义层内存泄漏消失了!

这是我的实现:

class Crop(keras.layers.Layer):
    def __init__(self, dim, start, end, **kwargs):
        """
        Slice the tensor on the last dimension, keeping what is between start
        and end.
        Args
            dim   (int)   : dimension of the tensor (including the batch dim)
            start (int)   : index of where to start the cropping
            end   (int)   : index of where to stop the cropping
        """
        super(Crop, self).__init__(**kwargs)
        self.dimension = dim
        self.start = start
        self.end = end

    def call(self, inputs):
        if self.dimension == 0:
            return inputs[self.start:self.end]
        if self.dimension == 1:
            return inputs[:, self.start:self.end]
        if self.dimension == 2:
            return inputs[:, :, self.start:self.end]
        if self.dimension == 3:
            return inputs[:, :, :, self.start:self.end]
        if self.dimension == 4:
            return inputs[:, :, :, :, self.start:self.end]

    def compute_output_shape(self, input_shape):
        return (input_shape[:-1] + (self.end - self.start,))

    def get_config(self):
        config = {
            'dim': self.dimension,
            'start': self.start,
            'end': self.end,
        }
        base_config = super(Crop, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))