Python BeautifulSoup 网络抓取:将数据添加到列表

Python BeautifulSoup webcrawling: Appending piece of data to list

我要抓取的网站是 http://www.boxofficemojo.com/yearly/chart/?yr=2013&p=.htm. The specific page I'm focusing on now is http://www.boxofficemojo.com/movies/?id=catchingfire.htm

我需要获取 "Foreign gross" 金额(在总生命周期总收入下),但出于某种原因,我无法通过循环获取它以便它遍历所有电影,但它与我输入的单个 link 一起使用。

这是我获取每部电影数量的函数。

def getForeign(item_url):
    s = urlopen(item_url).read()
    soup = BeautifulSoup(s)
    return soup.find(text="Foreign:").find_parent("td").find_next_sibling("td").get_text(strip = True)

这是遍历每个link

的函数
def spider(max_pages):
    page = 1
    while page <= max_pages:
        url = 'http://www.boxofficemojo.com/yearly/chart/?page=' + str(page) + '&view=releasedate&view2=domestic&yr=2013&p=.htm'
        source_code = requests.get(url)
        plain_text = source_code.text
        soup = BeautifulSoup(plain_text)
        for link in soup.select('td > b > font > a[href^=/movies/?]'):
            href = 'http://www.boxofficemojo.com' + link.get('href')
            details(href)
            listOfDirectors.append(getDirectors(href))
            str(listOfDirectors).replace('[','').replace(']','')
            #getActors(href)
            title = link.string
            listOfTitles.append(title)
        page += 1

我有一个名为 listOfForeign = [] 的列表,我想将每部电影的外国总金额附加到该列表。 问题是,如果我调用 getForeign(item_url) 使用我输入的单个完整 link 例如:

print listOfForeign.append(getForeign(http://www.boxofficemojo.com/movies/?id=catchingfire.htm))

之后

print listOfForeign

它打印出一个正确的数量。

但是当我 运行 函数 spider(max_pages),并添加:

listOfForeign.append(getForeign(href)) 

在 for 循环中,稍后尝试打印 listOfForeign,我得到一个错误

AttributeError: 'NoneType' object has no attribute 'find_parent'

为什么我无法在蜘蛛功能中为每部电影成功添加此数量?在 spider(max_pages) 函数中,我在变量 "href" 中获取每个电影的 link,并且基本上做与分别添加每个个体 link 相同的事情。

完整代码:

import requests
from bs4 import BeautifulSoup
from urllib import urlopen
import xlwt
import csv
from tempfile import TemporaryFile

listOfTitles = []
listOfGenre = []
listOfRuntime = []
listOfRatings = []
listOfBudget = []
listOfDirectors = []
listOfActors = []
listOfForeign = []
resultFile = open("movies.csv",'wb')
wr = csv.writer(resultFile, dialect='excel')

def spider(max_pages):
    page = 1
    while page <= max_pages:
        url = 'http://www.boxofficemojo.com/yearly/chart/?page=' + str(page) + '&view=releasedate&view2=domestic&yr=2013&p=.htm'
        source_code = requests.get(url)
        plain_text = source_code.text
        soup = BeautifulSoup(plain_text)
        for link in soup.select('td > b > font > a[href^=/movies/?]'):
            href = 'http://www.boxofficemojo.com' + link.get('href')
            details(href)
            listOfForeign.append(getForeign(href))
            listOfDirectors.append(getDirectors(href))
            str(listOfDirectors).replace('[','').replace(']','')
            #getActors(href)
            title = link.string
            listOfTitles.append(title)
        page += 1


def getDirectors(item_url):
    source_code = requests.get(item_url)
    plain_text = source_code.text
    soup = BeautifulSoup(plain_text)
    tempDirector = []
    for director in soup.select('td > font > a[href^=/people/chart/?view=Director]'):
        tempDirector.append(str(director.string))
    return tempDirector

def getActors(item_url):
    source_code = requests.get(item_url)
    plain_text = source_code.text
    soup = BeautifulSoup(plain_text)
    tempActors = []
    print soup.find(text="Actors:").find_parent("tr").text[7:]



def details(href):
    response = requests.get(href)
    soup = BeautifulSoup(response.content)
    genre = soup.find(text="Genre: ").next_sibling.text
    rating = soup.find(text='MPAA Rating: ').next_sibling.text
    runtime = soup.find(text='Runtime: ').next_sibling.text
    budget = soup.find(text='Production Budget: ').next_sibling.text

    listOfGenre.append(genre)
    listOfRuntime.append(runtime)
    listOfRatings.append(rating)
    listOfBudget.append(budget)


def getForeign(item_url):
    s = urlopen(item_url).read()
    soup = BeautifulSoup(s)
    try:
        return     soup.find(text="Foreign:").find_parent("td").find_next_sibling("td").get_text(strip = True)
    except AttributeError:
        return "[=18=]"

spider(1)

print listOfForeign
wr.writerow(listOfTitles)
wr.writerow(listOfGenre)
wr.writerow(listOfRuntime)
wr.writerow(listOfRatings)
wr.writerow(listOfBudget)
for item in listOfDirectors:
    wr.writerow(item)

一旦代码进入电影页面没有外国收入,代码就会失败,例如42。你应该处理这样的情况。比如捕获异常,设置为[=11=].

您也遇到了 differences between parsers - specify the lxml or html5lib parser explicitly (you would need to have lxml or html5lib installed).

还有,为什么不用requests来解析电影页面呢:

def getForeign(item_url):
    response = requests.get(item_url)
    soup = BeautifulSoup(response.content, "lxml")  # or BeautifulSoup(response.content, "html5lib")
    try:
        return soup.find(text="Foreign:").find_parent("td").find_next_sibling("td").get_text(strip = True)
    except AttributeError:
        return "[=10=]"

附带说明一下,总体而言,由于脚本的阻塞性质,您的代码变得相当复杂和缓慢,请求是一个接一个发送的顺序地。切换到 Scrapy web-scraping framework 可能是个好主意,除了使代码更快之外,还有助于将其组织成逻辑组 - 你将拥有一个内部具有抓取逻辑的蜘蛛,item class 定义提取数据模型、将提取的数据写入数据库的管道(如果需要)等等。