python-3 并行化我的函数问题
python-3 parallelizing my functions issue
我正在使用 python-3.x 并且我想通过使用多处理并行化我的函数来加速我的代码,我应用了多处理但由于某种原因,它可能不起作用,我不确定问题出在哪里?
所以下面是我所做的一个小例子。
任何建议表示赞赏
import numpy as np
import math
import multiprocessing as mp
lower_bound = -500
upper_bound =500
dimension =1000
Base_Value = 10
Popula_size = 3000
MinResolution = 8
population_in = np.random.choice ( np.linspace ( lower_bound , upper_bound , Base_Value ** MinResolution ) , size = ( Popula_size , dimension ) , replace = True )
resolution = np.random.randint(1, 8, size = (1, dimension))
def Discretiz(lower_bound, upper_bound, DiscPopulation, resolution):
pop_size = int(len(DiscPopulation))
the_new_population = np.zeros ((pop_size, dimension))
for i in range (pop_size) :
for ii in range (dimension):
decimal = int(np.round((DiscPopulation[i][ii] - lower_bound) / ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1))))
the_new_population[i, ii] = (lower_bound + decimal * ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1)))
return the_new_population
# without_parallelizing
# the_new_population = Discretiz(lower_bound, upper_bound, population_in, resolution)
# wit_parallelizing
pool = mp.Pool(mp.cpu_count())
the_new_population = [pool.apply(Discretiz, args=(lower_bound, upper_bound, population_in, resolution))]
print (the_new_population)
我现在修复了代码,但仍然没有比旧代码快,它需要更多时间不知道为什么?
没有并行化:25.831339597702026 秒
并行化:44.12706518173218 秒 ???!!!
import numpy as np
import math
import multiprocessing as mp
import time
from multiprocessing import Process, Value, Array, Manager, Pool, cpu_count
import time
lower_bound = -500
upper_bound =500
dimension =1000
Base_Value = 10
Popula_size = 2000
MinResolution = 8
population_in = np.random.choice ( np.linspace ( lower_bound , upper_bound , Base_Value ** MinResolution ) , size = ( Popula_size , dimension ) , replace = True )
resolution = np.random.randint(1, 8, size = (1, dimension))
start_time = time.time()
def Discretiz1(DiscPopulation, resolution):
# def Discretiz1(DiscPopulation):
DiscPopulation = np.reshape(DiscPopulation, (Popula_size, dimension))
resolution = np.reshape(resolution, (1,dimension))
the_new_population = np.zeros ((Popula_size, dimension))
for i in range (Popula_size) :
for ii in range (dimension):
decimal = int(np.round((DiscPopulation[i][ii] - lower_bound) / ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1))))
the_new_population[i, ii] = (lower_bound + decimal * ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1)))
# print(the_new_population)
if __name__ == '__main__':
num_cores = cpu_count()
Pool(processes=num_cores)
population_in = np.reshape(population_in, (1,Popula_size * dimension))[0]
resolution = np.reshape(resolution, (1,dimension))[0]
arr1 = Array('d', population_in)
arr2 = Array('i', resolution)
start_time = time.time()
p = Process(target=Discretiz1, args=(arr1, arr2))
p.start()
p.join()
print('--- %s seconds ---'%(time.time() - start_time))
print("--- %s seconds ---3" % (time.time() - start_time))
这是旧的或没有并行化:
import numpy as np
import math
import multiprocessing as mp
import time
from multiprocessing import Process, Value, Array, Manager, Pool, cpu_count
import time
lower_bound = -500
upper_bound =500
dimension =1000
Base_Value = 10
Popula_size = 2000
MinResolution = 8
population_in = np.random.choice ( np.linspace ( lower_bound , upper_bound , Base_Value ** MinResolution ) , size = ( Popula_size , dimension ) , replace = True )
resolution = np.random.randint(1, 8, size = (1, dimension))
start_time = time.time()
def Discretiz(lower_bound, upper_bound, DiscPopulation, resolution):
pop_size = int(len(DiscPopulation))
the_new_population = np.zeros ((pop_size, dimension))
for i in range (pop_size) :
for ii in range (dimension):
decimal = int(np.round((DiscPopulation[i][ii] - lower_bound) / ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1))))
the_new_population[i, ii] = (lower_bound + decimal * ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1)))
return the_new_population
# without_parallelizing
the_new_population = Discretiz(lower_bound, upper_bound, population_in, resolution)
print("--- %s seconds ---" % (time.time() - start_time))
与:
population_in = np.random.choice ( np.linspace ( lower_bound , upper_bound , Base_Value ** MinResolution ) , size = ( Popula_size , dimension ) , replace = True )
你制作一个二维数组 (Popula_size, dimension)
形状。这作为 DiscPopulation
.
传递
resolution = np.random.randint(1, 8, size = (1, dimension))
双重迭代函数可以替换为对整个数组进行运算而无需慢速迭代的函数:
def Discretiz(lower_bound, upper_bound, DiscPopulation, resolution):
pop_size = DiscPopulation[0] # no need for the 'int'
num = DiscPopulation - lower_bound
divisor = (upper_bound-lower_bound)/(Base_value**resolution-1)
decimal = num/divisor
# this divide does (pop,dimension)/(1,dimension); ok by broadcasting)
decimal = np.round(decimal) # no need for int
the_new_population = lower_bound + decimal * divisor
return the_new_population
我在这里写了这个in-place。它在语法上是正确的,但我没有尝试 运行 它。
我正在使用 python-3.x 并且我想通过使用多处理并行化我的函数来加速我的代码,我应用了多处理但由于某种原因,它可能不起作用,我不确定问题出在哪里?
所以下面是我所做的一个小例子。 任何建议表示赞赏
import numpy as np
import math
import multiprocessing as mp
lower_bound = -500
upper_bound =500
dimension =1000
Base_Value = 10
Popula_size = 3000
MinResolution = 8
population_in = np.random.choice ( np.linspace ( lower_bound , upper_bound , Base_Value ** MinResolution ) , size = ( Popula_size , dimension ) , replace = True )
resolution = np.random.randint(1, 8, size = (1, dimension))
def Discretiz(lower_bound, upper_bound, DiscPopulation, resolution):
pop_size = int(len(DiscPopulation))
the_new_population = np.zeros ((pop_size, dimension))
for i in range (pop_size) :
for ii in range (dimension):
decimal = int(np.round((DiscPopulation[i][ii] - lower_bound) / ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1))))
the_new_population[i, ii] = (lower_bound + decimal * ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1)))
return the_new_population
# without_parallelizing
# the_new_population = Discretiz(lower_bound, upper_bound, population_in, resolution)
# wit_parallelizing
pool = mp.Pool(mp.cpu_count())
the_new_population = [pool.apply(Discretiz, args=(lower_bound, upper_bound, population_in, resolution))]
print (the_new_population)
我现在修复了代码,但仍然没有比旧代码快,它需要更多时间不知道为什么? 没有并行化:25.831339597702026 秒 并行化:44.12706518173218 秒 ???!!!
import numpy as np
import math
import multiprocessing as mp
import time
from multiprocessing import Process, Value, Array, Manager, Pool, cpu_count
import time
lower_bound = -500
upper_bound =500
dimension =1000
Base_Value = 10
Popula_size = 2000
MinResolution = 8
population_in = np.random.choice ( np.linspace ( lower_bound , upper_bound , Base_Value ** MinResolution ) , size = ( Popula_size , dimension ) , replace = True )
resolution = np.random.randint(1, 8, size = (1, dimension))
start_time = time.time()
def Discretiz1(DiscPopulation, resolution):
# def Discretiz1(DiscPopulation):
DiscPopulation = np.reshape(DiscPopulation, (Popula_size, dimension))
resolution = np.reshape(resolution, (1,dimension))
the_new_population = np.zeros ((Popula_size, dimension))
for i in range (Popula_size) :
for ii in range (dimension):
decimal = int(np.round((DiscPopulation[i][ii] - lower_bound) / ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1))))
the_new_population[i, ii] = (lower_bound + decimal * ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1)))
# print(the_new_population)
if __name__ == '__main__':
num_cores = cpu_count()
Pool(processes=num_cores)
population_in = np.reshape(population_in, (1,Popula_size * dimension))[0]
resolution = np.reshape(resolution, (1,dimension))[0]
arr1 = Array('d', population_in)
arr2 = Array('i', resolution)
start_time = time.time()
p = Process(target=Discretiz1, args=(arr1, arr2))
p.start()
p.join()
print('--- %s seconds ---'%(time.time() - start_time))
print("--- %s seconds ---3" % (time.time() - start_time))
这是旧的或没有并行化:
import numpy as np
import math
import multiprocessing as mp
import time
from multiprocessing import Process, Value, Array, Manager, Pool, cpu_count
import time
lower_bound = -500
upper_bound =500
dimension =1000
Base_Value = 10
Popula_size = 2000
MinResolution = 8
population_in = np.random.choice ( np.linspace ( lower_bound , upper_bound , Base_Value ** MinResolution ) , size = ( Popula_size , dimension ) , replace = True )
resolution = np.random.randint(1, 8, size = (1, dimension))
start_time = time.time()
def Discretiz(lower_bound, upper_bound, DiscPopulation, resolution):
pop_size = int(len(DiscPopulation))
the_new_population = np.zeros ((pop_size, dimension))
for i in range (pop_size) :
for ii in range (dimension):
decimal = int(np.round((DiscPopulation[i][ii] - lower_bound) / ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1))))
the_new_population[i, ii] = (lower_bound + decimal * ((upper_bound-lower_bound)/(math.pow(Base_Value,resolution[:,ii])-1)))
return the_new_population
# without_parallelizing
the_new_population = Discretiz(lower_bound, upper_bound, population_in, resolution)
print("--- %s seconds ---" % (time.time() - start_time))
与:
population_in = np.random.choice ( np.linspace ( lower_bound , upper_bound , Base_Value ** MinResolution ) , size = ( Popula_size , dimension ) , replace = True )
你制作一个二维数组 (Popula_size, dimension)
形状。这作为 DiscPopulation
.
resolution = np.random.randint(1, 8, size = (1, dimension))
双重迭代函数可以替换为对整个数组进行运算而无需慢速迭代的函数:
def Discretiz(lower_bound, upper_bound, DiscPopulation, resolution):
pop_size = DiscPopulation[0] # no need for the 'int'
num = DiscPopulation - lower_bound
divisor = (upper_bound-lower_bound)/(Base_value**resolution-1)
decimal = num/divisor
# this divide does (pop,dimension)/(1,dimension); ok by broadcasting)
decimal = np.round(decimal) # no need for int
the_new_population = lower_bound + decimal * divisor
return the_new_population
我在这里写了这个in-place。它在语法上是正确的,但我没有尝试 运行 它。