return 类型取决于 Scala 中的输入类型的通用函数?

Generic function where the return type depends on the input type in Scala?

我正在尝试编译此代码:

import cats.effect.IO

sealed trait Shape {
  val x: Int
}

case class Square(x: Int, y: Int) extends Shape
case class Cube(x: Int, y: Int, z: Int) extends Shape

def modifyShape[S <: Shape](shape: S): IO[S] = shape match {
  case s: Square => IO(s.copy(y = 5))
  case c: Cube => IO(c.copy(z = 5))
}

当我尝试编译这段代码时出现错误:

type mismatch;
found : Square
required: S
case s: Square => IO(s.copy(y = 5))

如何让这段代码生效?

更新:
阅读评论和文章后,我尝试像这样使用 F-bound:

sealed trait Shape[A <: Shape[A]] { this: A =>
  val x: Int
}

case class Square(x: Int, y: Int) extends Shape[Square]
case class Cube(x: Int, y: Int, z: Int) extends Shape[Cube]

def modifyShape[S <: Shape[S]](shape: S): IO[S] = shape match {
  case s: Square => IO(s.copy(y = 5))
  case c: Cube => IO(c.copy(z = 5))
}

不过我好像漏掉了什么。这还是不行。

现在modifyShape的body

shape match {
  case s: Square => IO(s.copy(y = 5))
  case c: Cube => IO(c.copy(z = 5))
}

只是不满足其签名

def modifyShape[S <: Shape](shape: S): IO[S] 

在此处查看详细信息:

Why can't I return a concrete subtype of A if a generic subtype of A is declared as return parameter?

Type mismatch on abstract type used in pattern matching

foo[S <: Shape] 意味着 foo 必须为 any S 工作,它是 Shape 的子类型。假设我取S := Shape with SomeTrait,你不取returnIO[Shape with SomeTrait].

使用 F-bounded 类型参数尝试 GADT

sealed trait Shape[S <: Shape[S]] { this: S =>
  val x: Int
  def modifyShape: IO[S]
}

case class Square(x: Int, y: Int) extends Shape[Square] {
  override def modifyShape: IO[Square] = IO(this.copy(y = 5))
}
case class Cube(x: Int, y: Int, z: Int) extends Shape[Cube] {
  override def modifyShape: IO[Cube] = IO(this.copy(z = 5))
}

def modifyShape[S <: Shape[S]](shape: S): IO[S] = shape.modifyShape

https://tpolecat.github.io/2015/04/29/f-bounds.html@LuisMiguelMejíaSuárez 提醒 link)

或具有 F-bounded 类型成员的 GADT

sealed trait Shape { self =>
  val x: Int
  type S >: self.type <: Shape { type S = self.S }
  def modifyShape: IO[S]
}

case class Square(x: Int, y: Int) extends Shape {
  override type S = Square
  override def modifyShape: IO[Square] = IO(this.copy(y = 5))
}
case class Cube(x: Int, y: Int, z: Int) extends Shape {
  override type S = Cube
  override def modifyShape: IO[Cube] = IO(this.copy(z = 5))
}

def modifyShape[_S <: Shape { type S = _S}](shape: _S): IO[_S] = shape.modifyShape
// or  
// def modifyShape(shape: Shape): IO[shape.S] = shape.modifyShape

或 GADT(无 F-bound)

(详见@MatthiasBerndtanswer和我对它的评论,这段代码来自他的回答)

sealed trait Shape[A] {
  val x: Int
}

case class Square(x: Int, y: Int) extends Shape[Square]
case class Cube(x: Int, y: Int, z: Int) extends Shape[Cube]

def modifyShape[S](shape: Shape[S]): IO[S] = shape match {
  case s: Square => IO(s.copy(y = 5))
  case c: Cube   => IO(c.copy(z = 5))
}

或ADT +反射

sealed trait Shape {
  val x: Int
}

case class Square(x: Int, y: Int) extends Shape
case class Cube(x: Int, y: Int, z: Int) extends Shape

import scala.reflect.runtime.universe._

def modifyShape[S <: Shape : TypeTag](shape: S): IO[S] = (shape match {
  case s: Square if typeOf[S] <:< typeOf[Square] => IO(s.copy(y = 5))
  case c: Cube   if typeOf[S] <:< typeOf[Cube]   => IO(c.copy(z = 5))
}).asInstanceOf[IO[S]]

或 ADT + 输入 class

sealed trait Shape {
  val x: Int
}

case class Square(x: Int, y: Int) extends Shape
case class Cube(x: Int, y: Int, z: Int) extends Shape

trait ModifyShape[S <: Shape] {
  def modifyShape(s: S): IO[S]
}
object ModifyShape {
  implicit val squareModifyShape: ModifyShape[Square] = s => IO(s.copy(y = 5))
  implicit val cubeModifyShape:   ModifyShape[Cube]   = c => IO(c.copy(z = 5))
}

def modifyShape[S <: Shape](shape: S)(implicit ms: ModifyShape[S]): IO[S] =
  ms.modifyShape(shape)

或ADT + 磁铁

sealed trait Shape {
  val x: Int
}

case class Square(x: Int, y: Int) extends Shape
case class Cube(x: Int, y: Int, z: Int) extends Shape

import scala.language.implicitConversions

trait ModifyShape {
  type Out
  def modifyShape(): Out
}
object ModifyShape {
  implicit def fromSquare(s: Square): ModifyShape { type Out = IO[Square] } = new ModifyShape {
    override type Out = IO[Square]
    override def modifyShape(): IO[Square] = IO(s.copy(y = 5))
  }
  implicit def fromCube(c: Cube): ModifyShape { type Out = IO[Cube] } = new ModifyShape {
    override type Out = IO[Cube]
    override def modifyShape(): IO[Cube] = IO(c.copy(z = 5))
  }
}

def modifyShape(shape: ModifyShape): shape.Out = shape.modifyShape()

此处的解决方案是使用 GADT,一种广义代数数据类型。

在正常的 (non-generalized) ADT 中,case classes 将采用与密封特征完全相同的类型参数,并像本例中那样未经修改地传递它们:

sealed trait Either[A, B]
case class Left[A, B](a: A) extends Either[A, B]
case class Right[A, B](b: B) extends Either[A, B]
// both Left and Right take two type parameters, A and B,
// and simply pass them through to sealed trait Either. 

在广义的ADT中,没有这样的限制。因此,SquareCube 可以采用与 Shape 不同的类型参数集(在这种情况下是空集,根本就意味着 none),并且它们可以Shape 的类型参数用自己的类型参数以外的东西填充。在这种情况下,因为它们没有任何可以传递给 Shape 的类型参数,所以它们只传递自己的类型。

sealed trait Shape[A] {
  val x: Int
}

case class Square(x: Int, y: Int) extends Shape[Square]
case class Cube(x: Int, y: Int, z: Int) extends Shape[Cube]

使用此声明,将编译以下定义:

  def modifyShape[S](shape: Shape[S]): IO[S] = shape match {
    case s: Square => IO(s.copy(y = 5))
    case c: Cube => IO(c.copy(z = 5))
  }

当 Scala 编译器发现 shape 实际上是 Square 时,它会很聪明地判断出 S 必须是 Square,因为那是Square 案例 class 作为类型参数传递给 Shape.

的内容

但是SquareCube没有必要将自己的类型作为类型参数传递给Shape。例如,他们可以像本例中那样传递另一个:

  sealed trait Shape[A] {
    val x: Int
  }

  case class Square(x: Int, y: Int) extends Shape[Cube]
  case class Cube(x: Int, y: Int, z: Int) extends Shape[Square]

  def changeDimension[S](shape: Shape[S]): IO[S] = shape match {
    case s: Square => IO(Cube(s.x, s.y, 42))
    case c: Cube => IO(Square(c.x, c.y))
  }


  val x: IO[Square] = changeDimension(Cube(3, 6, 25))