pandas:对多索引数据帧重新采样
pandas: resample a multi-index dataframe
我有一个包含多个索引的数据框:“主题”和“日期时间”。
每行对应一个主题和日期时间,数据框的列对应各种测量值。
天数范围因主题而异,并且给定主题可能会缺少一些天数(参见示例)。此外,一个主题在给定的一天可以有一个或多个值。
我想对数据帧重新采样,以便:
- 每个主题每天只有一行(我不关心一天中的时间),
- 每列值是当天最后一个非 NaN(如果当天没有值,则为 NaN),
- 不会创建或保留任何列上没有值的天数。
例如,以下数据框示例:
a b
subject datetime
patient1 2018-01-01 00:00:00 2.0 high
2018-01-01 01:00:00 NaN medium
2018-01-01 02:00:00 6.0 NaN
2018-01-01 03:00:00 NaN NaN
2018-01-02 00:00:00 4.3 low
patient2 2018-01-01 00:00:00 NaN medium
2018-01-01 02:00:00 NaN NaN
2018-01-01 03:00:00 5.0 NaN
2018-01-03 00:00:00 9.0 NaN
2018-01-04 02:00:00 NaN NaN
应该return:
a b
subject datetime
patient1 2018-01-01 00:00:00 6.0 medium
2018-01-02 00:00:00 4.3 low
patient2 2018-01-01 00:00:00 5.0 medium
2018-01-03 00:00:00 9.0 NaN
我花了太多时间尝试使用带有 'pad' 选项的重新采样来获得它,但我总是得到错误或者不是我想要的结果。有人可以帮忙吗?
注意:这是创建示例数据框的代码:
import pandas as pd
import numpy as np
index = pd.MultiIndex.from_product([['patient1', 'patient2'], pd.date_range('20180101', periods=4,
freq='h')])
df = pd.DataFrame({'a': [2, np.nan, 6, np.nan, np.nan, np.nan, np.nan, 5], 'b': ['high', 'medium', np.nan, np.nan, 'medium', 'low', np.nan, np.nan]},
index=index)
df.index.names = ['subject', 'datetime']
df = df.drop(df.index[5])
df.at[('patient2', '2018-01-03 00:00:00'), 'a'] = 9
df.at[('patient2', '2018-01-04 02:00:00'), 'a'] = None
df.at[('patient1', '2018-01-02 00:00:00'), 'a'] = 4.3
df.at[('patient1', '2018-01-02 00:00:00'), 'b'] = 'low'
df = df.sort_index(level=['subject', 'datetime'])
这应该可以完成工作:
def day_agg(series_):
try:
return series_.dropna().iloc[-1]
except IndexError:
return float("nan")
df = df.reset_index().sort_values("datetime")
df.groupby([df["subject"],df.datetime.map(lambda x:datetime(year=x.year,month=x.month,day=x.day))])\
.agg({"a":day_agg, "b":day_agg})\
.dropna(how="all")
# drop a et b we don't need them when they ='re both na
df = df.reset_index().dropna(subset=["a", "b"], how="all")
#add a day columns we need it to keep last value
df["dt_day"] = df["datetime"].dt.date
#d1 result dataframe which we add a et b
d1 = df.copy().drop_duplicates(subset=["subject", "dt_day"]).loc[:, ["subject", "datetime"]].reset_index(drop=True)
#add a et b to ou dataframe result
for col in ["a", "b"]:
d1.loc[:,col] = (df.copy().
dropna(subset=[col]).drop_duplicates(subset=["subject", "dt_day"], keep="last")[col]
.reset_index(drop=True))
Wall time: 24 ms
@Shubham Sharma code => Wall time: 2.94 ms
subject datetime a b
0 patient1 2018-01-01 6.0 medium
1 patient1 2018-01-02 4.3 low
2 patient2 2018-01-01 5.0 medium
3 patient2 2018-01-03 9.0 NaN
感谢您的提问:)
让我们 floor
datetime
每日频率,然后 groupby
subject
上的数据帧 + floored 时间戳和 agg
使用 last
, 最后 drop
行全部 NaN's
:
i = pd.to_datetime(df.index.get_level_values(1)).floor('d')
df1 = df.groupby(['subject', i]).agg('last').dropna(how='all')
a b
subject datetime
patient1 2018-01-01 6.0 medium
2018-01-02 4.3 low
patient2 2018-01-01 5.0 medium
2018-01-03 9.0 NaN
我有一个包含多个索引的数据框:“主题”和“日期时间”。 每行对应一个主题和日期时间,数据框的列对应各种测量值。
天数范围因主题而异,并且给定主题可能会缺少一些天数(参见示例)。此外,一个主题在给定的一天可以有一个或多个值。
我想对数据帧重新采样,以便:
- 每个主题每天只有一行(我不关心一天中的时间),
- 每列值是当天最后一个非 NaN(如果当天没有值,则为 NaN),
- 不会创建或保留任何列上没有值的天数。
例如,以下数据框示例:
a b
subject datetime
patient1 2018-01-01 00:00:00 2.0 high
2018-01-01 01:00:00 NaN medium
2018-01-01 02:00:00 6.0 NaN
2018-01-01 03:00:00 NaN NaN
2018-01-02 00:00:00 4.3 low
patient2 2018-01-01 00:00:00 NaN medium
2018-01-01 02:00:00 NaN NaN
2018-01-01 03:00:00 5.0 NaN
2018-01-03 00:00:00 9.0 NaN
2018-01-04 02:00:00 NaN NaN
应该return:
a b
subject datetime
patient1 2018-01-01 00:00:00 6.0 medium
2018-01-02 00:00:00 4.3 low
patient2 2018-01-01 00:00:00 5.0 medium
2018-01-03 00:00:00 9.0 NaN
我花了太多时间尝试使用带有 'pad' 选项的重新采样来获得它,但我总是得到错误或者不是我想要的结果。有人可以帮忙吗?
注意:这是创建示例数据框的代码:
import pandas as pd
import numpy as np
index = pd.MultiIndex.from_product([['patient1', 'patient2'], pd.date_range('20180101', periods=4,
freq='h')])
df = pd.DataFrame({'a': [2, np.nan, 6, np.nan, np.nan, np.nan, np.nan, 5], 'b': ['high', 'medium', np.nan, np.nan, 'medium', 'low', np.nan, np.nan]},
index=index)
df.index.names = ['subject', 'datetime']
df = df.drop(df.index[5])
df.at[('patient2', '2018-01-03 00:00:00'), 'a'] = 9
df.at[('patient2', '2018-01-04 02:00:00'), 'a'] = None
df.at[('patient1', '2018-01-02 00:00:00'), 'a'] = 4.3
df.at[('patient1', '2018-01-02 00:00:00'), 'b'] = 'low'
df = df.sort_index(level=['subject', 'datetime'])
这应该可以完成工作:
def day_agg(series_):
try:
return series_.dropna().iloc[-1]
except IndexError:
return float("nan")
df = df.reset_index().sort_values("datetime")
df.groupby([df["subject"],df.datetime.map(lambda x:datetime(year=x.year,month=x.month,day=x.day))])\
.agg({"a":day_agg, "b":day_agg})\
.dropna(how="all")
# drop a et b we don't need them when they ='re both na
df = df.reset_index().dropna(subset=["a", "b"], how="all")
#add a day columns we need it to keep last value
df["dt_day"] = df["datetime"].dt.date
#d1 result dataframe which we add a et b
d1 = df.copy().drop_duplicates(subset=["subject", "dt_day"]).loc[:, ["subject", "datetime"]].reset_index(drop=True)
#add a et b to ou dataframe result
for col in ["a", "b"]:
d1.loc[:,col] = (df.copy().
dropna(subset=[col]).drop_duplicates(subset=["subject", "dt_day"], keep="last")[col]
.reset_index(drop=True))
Wall time: 24 ms
@Shubham Sharma code => Wall time: 2.94 ms
subject datetime a b
0 patient1 2018-01-01 6.0 medium
1 patient1 2018-01-02 4.3 low
2 patient2 2018-01-01 5.0 medium
3 patient2 2018-01-03 9.0 NaN
感谢您的提问:)
让我们 floor
datetime
每日频率,然后 groupby
subject
上的数据帧 + floored 时间戳和 agg
使用 last
, 最后 drop
行全部 NaN's
:
i = pd.to_datetime(df.index.get_level_values(1)).floor('d')
df1 = df.groupby(['subject', i]).agg('last').dropna(how='all')
a b
subject datetime
patient1 2018-01-01 6.0 medium
2018-01-02 4.3 low
patient2 2018-01-01 5.0 medium
2018-01-03 9.0 NaN