将坐标打印到带有数据的 csv 文件

Printing Coordinates to a csv File with Data

我需要将坐标和关联数据提取到 .csv 文件中。

我有一个 4x4 矩阵,写成列表 (network1) 以及每个索引的相应值 (q_val)。我的目标是确定 1 在 network1 中出现的坐标,并将这些坐标与相应的 q_val 一起导出到 .csv 文件。

请查看下面的当前代码:

network1 = [0,1,0,0,0,0,1,0,0,0,1,1,0,0,1,1]
q_val = [50,100,150,200,250,300,350,400,450,500,550,600,650,700,750,800]

data = np.array(network1)
shape = (4,4)
network2 = data.reshape(shape)
print(network2)

coordinates = np.where(network2 == 1)
print(coordinates)

listOfCoordinates= list(zip(coordinates[0], coordinates[1]))

for coords in listOfCoordinates:      
    print(coords)

我的 Python 这个过程的输出看起来是正确的,如下所示:

[[0 1 0 0]
 [0 0 1 0]
 [0 0 1 1]
 [0 0 1 1]]

(array([0, 1, 2, 2, 3, 3], dtype=int64), array([1, 2, 2, 3, 2, 3], dtype=int64))

(0, 1)
(1, 2)
(2, 2)
(2, 3)
(3, 2)
(3, 3)

如果能获得一些帮助以完成以下额外步骤,那就太好了:

  1. 将索引移动 +1 [即结果应为 (1,2)、(2,3)、(3,3)、(3,4)、(4,3)、(4,4)]。
  2. 将这些打印到 .csv 文件中,不带方括号和逗号,仅以空格分隔。这应该看起来像下面的照片。
  3. 理想情况下,我还希望它在页眉和 ; 中打印 q_val。低于结果。

非常感谢任何帮助 - 我相信还有更有效的方法来完成这个过程,所以我非常乐意接受任何建议!

你可以试试下面的代码我有 added/changed 几行你的原始代码,我已经评论过:

import csv # import cvs

network1 = [0,1,0,0,0,0,1,0,0,0,1,1,0,0,1,1]
q_val = [50,100,150,200,250,300,350,400,450,500,550,600,650,700,750,800]


data = np.array(network1)
shape = (4,4)
network2 = data.reshape(shape)
print( network2)

coordinates = np.where(network2 == 1) 

# select the needed q_val 
q_val_selected = [q_val[i] for i,v in enumerate(network1) if network1[i]==1] # select the needed q_val 

print(coordinates)

# add "+1"s and the selected q_vals
listOfCoordinates= list(zip(coordinates[0] + 1, coordinates[1] + 1, q_val_selected)) 


for coords in listOfCoordinates:      
    print(coords)

# add a header and semicolon
listOfCoordinates = [("c1", "c2", "q_val")] + listOfCoordinates + [(";")]
    
# wrte to a csv file
with open('some.csv', 'w', newline='') as f:
    writer = csv.writer(f,delimiter=' ')
    writer.writerows(listOfCoordinates)

如您所见,我在页眉中添加了两个标签。希望没关系

这应该能满足您的要求:

import numpy as np
import pandas as pd

network1 = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1]
q_val = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800]

network1_matrix = np.array(network1).reshape(4, 4)
q_val_matrix = np.array(q_val).reshape(4, 4)


coordinates = np.transpose(np.where(network1_matrix == 1))

filtered_values = [q_val_matrix[tuple(coordinate)] for coordinate in coordinates]

# Create the DataFrame and add 1 to each index
result_df = pd.DataFrame({'1': coordinates[:, 0] + 1, '2': coordinates[:, 1] + 1, '3': filtered_values})
# Add ';' in the end of the DataFrame
result_df = result_df.append({'1': ';', '2': '', '3': ''}, ignore_index=True)
# Add 'q_val' as header
result_df.columns = ['q_val', '', '']
# Export the DataFrame as csv file
result_df.to_csv('result.csv', sep=' ', index=False)